cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A188776 Numbers n such that Sum_{k=1..n} k^k == 1 (mod n).

Original entry on oeis.org

1, 2, 9, 30, 6871, 185779, 208541, 813162, 864355, 2573155
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A001923(n) == 1 (mod n).
a(11) > 10^7. - Hiroaki Yamanouchi, Aug 25 2015

Crossrefs

Cf. A001923, A128981 (sum == 0 mod n), A188775 (sum == -1 mod n).

Programs

  • Mathematica
    Union@Table[If[Mod[Sum[PowerMod[i,i,n],{i,1,n}],n]==1,Print[n];n],{n,1,20000}]
  • PARI
    f(n)=lift(sum(k=1, n, Mod(k, n)^k));
    for(n=1, 10^6, if(f(n)==1, print1(n, ", "))) /* Joerg Arndt, Apr 10 2011 */
    
  • Python
    from itertools import accumulate, count, islice
    def A188776_gen(): # generator of terms
        yield 1
        for i, j in enumerate(accumulate(k**k for k in count(2)),start=2):
            if not j % i:
                yield i
    A188776_list = list(islice(A188776_gen(),5)) # Chai Wah Wu, Jun 18 2022

Extensions

a(6)-a(9) from Lars Blomberg, May 10 2011
a(1) inserted and a(10) added by Hiroaki Yamanouchi, Aug 25 2015

A341437 Numbers k such that k divides Sum_{j=0..k} j^(k-j).

Original entry on oeis.org

1, 2, 6, 7, 9, 42, 46, 431, 1806, 2506, 11318, 16965, 25426, 33146, 33361, 37053, 49365, 99221, 224506, 359703, 436994
Offset: 1

Views

Author

Seiichi Manyama, Feb 11 2021

Keywords

Comments

Numbers k such that k divides A026898(k-1).
a(19) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[Sum[PowerMod[k, n - k, n], {k, 0, n}], n] == 0, Print[n]], {n, 1, 3000}] (* Vaclav Kotesovec, Feb 12 2021 *)
  • PARI
    isok(n) = sum(k=0, n, Mod(k, n)^(n-k))==0;

Formula

0^6 + 1^5 + 2^4 + 3^3 + 4^2 + 5^1 + 6^0 = 66 = 6 * 11. So 6 is a term.

Extensions

a(19) from Vaclav Kotesovec, Feb 14 2021
a(20)-a(21) from Chai Wah Wu, Feb 15 2021

A341436 Numbers k such that k divides Sum_{j=1..k} j^(k+1-j).

Original entry on oeis.org

1, 5, 16, 208, 688, 784, 2864, 9555, 17776, 81239
Offset: 1

Views

Author

Seiichi Manyama, Feb 11 2021

Keywords

Comments

Numbers k such that k divides A003101(k).
a(11) > 10^5.

Examples

			1^5 + 2^4 + 3^3 + 4^2 + 5^1 = 65 = 5 * 13. So 5 is a term.
		

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[Sum[PowerMod[k, n + 1 - k, n], {k, 1, n}], n] == 0, Print[n]], {n, 1, 3000}] (* Vaclav Kotesovec, Feb 12 2021 *)
  • PARI
    isok(n) = sum(k=1, n, Mod(k, n)^(n+1-k))==0;

A343932 a(n) = (Sum_{k=1..n} k^k) mod n.

Original entry on oeis.org

0, 1, 2, 0, 3, 5, 5, 4, 1, 7, 3, 4, 11, 13, 3, 4, 0, 15, 0, 4, 14, 13, 10, 20, 22, 11, 25, 20, 21, 1, 18, 4, 6, 17, 27, 12, 31, 27, 20, 28, 6, 41, 34, 32, 31, 45, 45, 4, 11, 25, 39, 48, 21, 45, 46, 12, 53, 47, 41, 32, 9, 5, 55, 4, 25, 7, 47, 8, 45, 19, 12, 60, 50, 43, 20, 60, 54, 29, 72, 36, 70, 31, 74, 40, 69, 7, 18, 20, 63, 3, 24, 32
Offset: 1

Views

Author

Seiichi Manyama, May 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[Sum[PowerMod[k, k, n], {k, 1, n}], n]; Array[a, 100] (* Amiram Eldar, May 04 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^k)%n;
    
  • Python
    def A343932(n): return sum(pow(k,k,n) for k in range(1,n+1)) % n # Chai Wah Wu, Jun 18 2022

Formula

a(n) = A001923(n) mod n.
Showing 1-4 of 4 results.