A188776 Numbers n such that Sum_{k=1..n} k^k == 1 (mod n).
1, 2, 9, 30, 6871, 185779, 208541, 813162, 864355, 2573155
Offset: 1
Programs
-
Mathematica
Union@Table[If[Mod[Sum[PowerMod[i,i,n],{i,1,n}],n]==1,Print[n];n],{n,1,20000}]
-
PARI
f(n)=lift(sum(k=1, n, Mod(k, n)^k)); for(n=1, 10^6, if(f(n)==1, print1(n, ", "))) /* Joerg Arndt, Apr 10 2011 */
-
Python
from itertools import accumulate, count, islice def A188776_gen(): # generator of terms yield 1 for i, j in enumerate(accumulate(k**k for k in count(2)),start=2): if not j % i: yield i A188776_list = list(islice(A188776_gen(),5)) # Chai Wah Wu, Jun 18 2022
Extensions
a(6)-a(9) from Lars Blomberg, May 10 2011
a(1) inserted and a(10) added by Hiroaki Yamanouchi, Aug 25 2015
Comments