cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A188836 Numbers n for which A188794(n)^2 = n.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 625, 841, 961, 1369, 1681, 1849, 3721, 4489, 5041, 5329, 7921, 9409, 10201, 10609, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 32761, 36481, 37249, 38809, 39601, 44521, 52441, 57121, 58081, 63001, 73441
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2011

Keywords

Comments

The sequence contains many squares of primes.
Question 1: What is the sequence of primes whose squares are not in this sequence? It begins: 23, 47, 53, 59, 79, 83, 107, ... A188833
Question 2: What is the sequence of composite numbers whose squares are in this sequence? It begins: 25, 289, 361, 529, ...

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) local h, i, k, m;
           m, i:= 0, 0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                      [seq (n-d, d=divisors(n-k) minus{1})]));
              if h>m then m, i:= h, k fi
           od; i
        end:
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 3, a(n-1))
          while not b(k)^2=k do od; k
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 13 2011
  • Mathematica
    b[n_] := Module[{h, i = 0, k, m = 0}, For[k = 2, k <= Floor[Sqrt[n]], k++, h = Length[Select[Table[n - d, {d, Rest[Divisors[n - k]]}], Mod[#, k] == 0 &]]; If[h > m, {m, i} = {h, k}]]; i];
    Reap[For[n = 1, n <= 80000, n++, If[b[n]^2==n, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)

A226182 a(n) is the smallest integer k >= 2 such that the number of divisors d>1 of n + k with k|n + d equals A225867(n).

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 4, 3, 2, 2, 3, 5, 2, 3, 2, 3, 2, 2, 4, 3, 2, 5, 4, 3, 2, 3, 2, 3, 2, 2, 4, 3, 2, 2, 2, 7, 2, 3, 2, 2, 2, 5, 4, 3, 2, 4, 4, 2, 2, 3, 2, 5, 6, 3, 4, 3, 2, 4, 8, 2, 2, 5, 4, 7, 2, 2, 4, 3, 2, 2, 4, 5, 2, 3, 2, 2, 6, 7, 4
Offset: 6

Views

Author

Vladimir Shevelev, May 30 2013

Keywords

Examples

			Let n = 33. We begin with k = 2. Divisors>1 of 33 + 2 = 35 are d = 5,7,35. For all d, 33 + d is divisible by k = 2. But the number of such d is 3, while A225867(33)= 6. Therefore, a(33) > 2. Consider now k = 3. Divisors>1 of 33 + 3 = 36 are 2,3,4,6,9,12,18,36, but only for d = 3,6,9,12,18,36, 33 + d is divisible by k = 3. Since we have exactly A225867(33) = 6 such divisors, then k = 3 is required and a(33) = 3.
		

Crossrefs

Programs

A188795 a(n) counts all integers k in [2,floor(sqrt(n))] such that the number of divisors d>1 of n-k with k|(n-d) equals A188550(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 4

Views

Author

Vladimir Shevelev, Apr 10 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local c, h, k, m;
           m, c:= 0, 0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                  [seq (n-d, d=divisors(n-k) minus{1})]));
              if h=m then c:=c+1 elif h>m then m, c:= h, 1 fi
           od; c
        end:
    seq(a(n), n=4..120);  # Alois P. Heinz, Apr 10 2011
  • Mathematica
    b[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest} ], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}];
    a[n_] := a[n] = Count[Range[2, Floor[Sqrt[n]]], k_ /; Count[Rest @ Divisors[n-k], d_ /; Divisible[n-d, k]] == b[n]];
    Table[a[n], {n, 4, 120}] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)

A188833 Primes p such that p^2 is not in A188836.

Original entry on oeis.org

23, 47, 53, 59, 79, 83, 107, 163, 167, 173, 179, 223, 227, 233, 257, 263, 269, 277, 283, 293, 317, 347, 353, 359, 367, 373, 383, 389, 401, 431, 439, 443, 457, 467, 479, 499, 503, 509, 557, 563, 569, 587, 593, 607, 643, 647, 653, 677, 683, 691, 719, 727, 733
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2011

Keywords

Crossrefs

Programs

  • Mathematica
    A188550[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest}], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}]; A188794[n_] := Module[{k=2, a1=A188550[n]}, While[DivisorSum[n-k,1&, #>1&&Divisible[n-#,k]&] != a1, k++];k]; s={}; Do[p=Prime[n]; p2=p^2; If[aa[p2]^2 != p2, AppendTo[s,p]], {n, 1, 130}]; s (* Amiram Eldar, Feb 06 2019 after Jean-François Alcover at A188550 *)

Extensions

More terms from Amiram Eldar, Feb 06 2019
Showing 1-4 of 4 results.