A188795 a(n) counts all integers k in [2,floor(sqrt(n))] such that the number of divisors d>1 of n-k with k|(n-d) equals A188550(n).
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..10000
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local c, h, k, m; m, c:= 0, 0; for k from 2 to floor(sqrt(n)) do h:= nops(select(x-> irem(x, k)=0, [seq (n-d, d=divisors(n-k) minus{1})])); if h=m then c:=c+1 elif h>m then m, c:= h, 1 fi od; c end: seq(a(n), n=4..120); # Alois P. Heinz, Apr 10 2011
-
Mathematica
b[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest} ], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}]; a[n_] := a[n] = Count[Range[2, Floor[Sqrt[n]]], k_ /; Count[Rest @ Divisors[n-k], d_ /; Divisible[n-d, k]] == b[n]]; Table[a[n], {n, 4, 120}] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)