A188860 Number of n X n binary arrays without the pattern 0 1 diagonally, vertically or antidiagonally.
1, 2, 7, 26, 95, 340, 1193, 4116, 14001, 47064, 156629, 516844, 1693073, 5511218, 17841247, 57477542, 184377699, 589195584, 1876395357, 5957318820, 18861068265, 59563612974, 187668462027, 590039959434, 1851508693479, 5799494052414, 18135645594003
Offset: 0
Keywords
Examples
Some solutions for 3X3 ..1..1..1....0..0..0....1..1..1....1..1..1....1..1..0....1..1..1....1..1..1 ..1..1..1....0..0..0....1..1..1....1..0..0....0..0..0....1..1..1....1..1..1 ..1..1..0....0..0..0....1..0..0....0..0..0....0..0..0....1..0..1....0..0..0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (terms n = 1..32 from R. H. Hardin)
Crossrefs
Cf. A188866.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, (2*n-1)*n+1, ((10*n^2-49*n+33)*a(n-1)-(6*n^2-9*n-33)*a(n-2) -(9*(n-3))*(2*n-7)*a(n-3))/((n-1)*(2*n-9))) end: seq(a(n), n=0..35); # Alois P. Heinz, Mar 30 2017
Formula
G.f.: (3*x^2-3*x+1-x*sqrt(1-3*x^2-2*x))/(1-3*x)^2. - Alois P. Heinz, Mar 30 2017
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 30 2017
Comments