cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188887 Decimal expansion of sqrt(2 + sqrt(3)).

Original entry on oeis.org

1, 9, 3, 1, 8, 5, 1, 6, 5, 2, 5, 7, 8, 1, 3, 6, 5, 7, 3, 4, 9, 9, 4, 8, 6, 3, 9, 9, 4, 5, 7, 7, 9, 4, 7, 3, 5, 2, 6, 7, 8, 0, 9, 6, 7, 8, 0, 1, 6, 8, 0, 9, 1, 0, 0, 8, 0, 4, 6, 8, 6, 1, 5, 2, 6, 2, 0, 8, 4, 6, 4, 2, 7, 9, 5, 9, 7, 1, 1, 0, 3, 2, 6, 9, 5, 1, 2, 3, 4, 8, 3, 7, 1, 6, 1, 4, 0, 9, 0, 3, 7, 7, 6, 8, 0, 4, 2, 2, 3, 7, 2, 8, 7, 6, 3, 2, 4, 3, 0, 7, 4, 8, 9, 1, 8, 5, 0, 7, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a sqrt(2)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(2)-extension rectangle matches the continued fraction [1,1,13,1,2,15,10,1,18,1,1,21,,...] (A188888) for the shape L/W = sqrt(2 + sqrt(3)). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(2)-extension rectangle, 1 square is removed first, then 1 square, then 13 squares, then 1 square, ..., so that the original rectangle of shape sqrt(2 + sqrt(3)) is partitioned into an infinite collection of squares.
sqrt(2 + sqrt(3)) is also the shape of the greater sqrt(6)-contraction rectangle; see A188738.
This constant is also the length of the Steiner span of three vertices of a unit square. - Jean-François Alcover, May 22 2014
It is also the larger positive coordinate of (symmetrical) intersection points created by x^2 + y^2 = 4 circle and y = 1/x hyperbola. The smaller coordinate is A101263. - Leszek Lezniak, Sep 18 2018
Length of the shortest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Nov 12 2020

Examples

			1.931851652578136573499486399457794735267809678016809...
		

Crossrefs

Programs

  • Magma
    Sqrt(2 + Sqrt(3)); // G. C. Greubel, Apr 10 2018
  • Mathematica
    r = 2^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    RealDigits[Sqrt[2 + Sqrt[3]], 10, 100][[1]] (* G. C. Greubel, Apr 10 2018 *)
  • PARI
    sqrt(2 + sqrt(3)) \\ G. C. Greubel, Apr 10 2018
    

Formula

Equals (sqrt(6) + sqrt(2))/2.
Equals exp(asinh(cos(Pi/4))). - Geoffrey Caveney, Apr 23 2014
Equals cos(Pi/4) + sqrt(1 + cos(Pi/4)^2). - Geoffrey Caveney, Apr 23 2014
Equals i^(1/6) + i^(-1/6). - Gary W. Adamson, Jul 07 2022
Equals the largest root of x - 1/x = sqrt(2) and of x^2 + 1/x^2 = 4. - Gary W. Adamson, Jun 12 2023
Equals Product_{k>=0} ((12*k + 2)*(12*k + 10))/((12*k + 1)*(12*k + 11)). - Antonio Graciá Llorente, Feb 24 2024
From Amiram Eldar, Nov 23 2024: (Start)
Equals A214726 / 2 = 2 * A019884 = 1 / A101263 = exp(A329247) = A217870^2 = sqrt(A019973).
Equals Product_{k>=1} (1 - (-1)^k/A091998(k)). (End)