A188915 Union of squares and powers of 2.
0, 1, 2, 4, 8, 9, 16, 25, 32, 36, 49, 64, 81, 100, 121, 128, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2048, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Haskell
import Data.List.Ordered (union) a188915 n = a188915_list !! n a188915_list = union a000290_list a000079_list -- Reinhard Zumkeller, May 19 2015, Apr 14 2011
-
Mathematica
seq[lim_] := Union[2^Range[1, Floor[Log2[lim]], 2], Range[0, Floor[Sqrt[lim]]]^2]; seq[3000] (* Amiram Eldar, Apr 13 2025 *)
-
Python
from math import isqrt def A188915(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-isqrt(x)-((m:=x.bit_length()-1)>>1)-(m&1) return bisection(f,n-1,n**2) # Chai Wah Wu, Sep 19 2024
Formula
Sum_{n>=1} 1/a(n) = Pi^2/6 + 2/3. - Amiram Eldar, Apr 13 2025
Comments