cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000302 Powers of 4: a(n) = 4^n.

Original entry on oeis.org

1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 4), L(1, 4), P(1, 4), T(1, 4). Essentially same as Pisot sequences E(4, 16), L(4, 16), P(4, 16), T(4, 16). See A008776 for definitions of Pisot sequences.
The convolution square root of this sequence is A000984, the central binomial coefficients: C(2n,n). - T. D. Noe, Jun 11 2002
With P(n) being the number of integer partitions of n, p(i) as the number of parts of the i-th partition of n, d(i) as the number of different parts of the i-th partition of n, m(i, j) the multiplicity of the j-th part of the i-th partition of n, one has a(n) = Sum_{i = 1..P(n)} p(i)!/(Product_{j = 1..d(i)} m(i, j)!) * 2^(n-1). - Thomas Wieder, May 18 2005
Sums of rows of the triangle in A122366. - Reinhard Zumkeller, Aug 30 2006
Hankel transform of A076035. - Philippe Deléham, Feb 28 2009
Equals the Catalan sequence: (1, 1, 2, 5, 14, ...), convolved with A032443: (1, 3, 11, 42, ...). - Gary W. Adamson, May 15 2009
Sum of coefficients of expansion of (1 + x + x^2 + x^3)^n.
a(n) is number of compositions of natural numbers into n parts less than 4. For example, a(2) = 16 since there are 16 compositions of natural numbers into 2 parts less than 4.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 4-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Squares in A002984. - Reinhard Zumkeller, Dec 28 2011
Row sums of Pascal's triangle using the rule that going left increases the value by a factor of k = 3. For example, the first three rows are {1}, {3, 1}, and {9, 6, 1}. Using this rule gives row sums as (k+1)^n. - Jon Perry, Oct 11 2012
First differences of A002450. - Omar E. Pol, Feb 20 2013
Sum of all peak heights in Dyck paths of semilength n+1. - David Scambler, Apr 22 2013
Powers of 4 exceed powers of 2 by A020522 which is the m-th oblong number A002378(m), m being the n-th Mersenne number A000225(n); hence, we may write, a(n) = A000079(n) + A002378(A000225(n)). - Lekraj Beedassy, Jan 17 2014
a(n) is equal to 1 plus the sum for 0 < k < 2^n of the numerators and denominators of the reduced fractions k/2^n. - J. M. Bergot, Jul 13 2015
Binomial transform of A000244. - Tony Foster III, Oct 01 2016
From Ilya Gutkovskiy, Oct 01 2016: (Start)
Number of nodes at level n regular 4-ary tree.
Partial sums of A002001. (End)
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
Also the number of connected dominating sets in the (n+1)-barbell graph. - Eric W. Weisstein, Jun 29 2017
Side length of the cells at level n in a pyramid scheme where a square grid is decomposed into overlapping 2 X 2 blocks (cf. Kropatsch, 1985). - Felix Fröhlich, Jul 04 2019
a(n-1) is the number of 3-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020

References

  • H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A024036, A052539, A032443, A000351 (Binomial transform).
Cf. A249307.
Cf. A083420.

Programs

Formula

a(n) = 4^n.
a(0) = 1; a(n) = 4*a(n-1).
G.f.: 1/(1-4*x).
E.g.f.: exp(4*x).
a(n) = Sum_{k = 0..n} binomial(2k, k) * binomial(2(n - k), n - k). - Benoit Cloitre, Jan 26 2003 [See Graham et al., eq. (5.39), p. 187. - Wolfdieter Lang, Aug 16 2019]
1 = Sum_{n >= 1} 3/a(n) = 3/4 + 3/16 + 3/64 + 3/256 + 3/1024, ...; with partial sums: 3/4, 15/16, 63/64, 255/256, 1023/1024, ... - Gary W. Adamson, Jun 16 2003
a(n) = A001045(2*n) + A001045(2*n+1). - Paul Barry, Apr 27 2004
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = Sum_{j = 0..n} 2^(n - j)*binomial(n + j, j). - Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
Hankel transform of A115967. - Philippe Deléham, Jun 22 2007
a(n) = 6*Stirling2(n+1, 4) + 6*Stirling2(n+1, 3) + 3*Stirling2(n+1, 2) + 1 = 2*Stirling2(2^n, 2^n - 1) + Stirling2(n+1, 2) + 1. - Ross La Haye, Jun 26 2008
a(n) = A159991(n)/A001024(n) = A047653(n) + A181765(n). A160700(a(n)) = A010685(n). - Reinhard Zumkeller, May 02 2009
a(n) = A188915(A006127(n)). - Reinhard Zumkeller, Apr 14 2011
a(n) = Sum_{k = 0..n} binomial(2*n+1, k). - Mircea Merca, Jun 25 2011
Sum_{n >= 1} Mobius(n)/a(n) = 0.1710822479183... - R. J. Mathar, Aug 12 2012
a(n) = Sum_{k = 0..n} binomial(2*k + x, k)*binomial(2*(n - k) - x, n - k) for every real number x. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = 5*a(n - 1) - 4*a(n - 2). - Jean-Bernard François, Sep 12 2013
a(n) = (2*n+1) * binomial(2*n,n) * Sum_{j=0..n} (-1)^j/(2*j+1)*binomial(n,j). - Vaclav Kotesovec, Sep 15 2013
a(n) = A000217(2^n - 1) + A000217(2^n). - J. M. Bergot, Dec 28 2014
a(n) = (2^n)^2 = A000079(n)^2. - Doug Bell, Jun 23 2015
a(n) = A002063(n)/3 - A004171(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = (1/2) * Product_{k = 0..n} (1 + (2*n + 1)/(2*k + 1)). - Peter Bala, Mar 06 2018
a(n) = A001045(n+1)*A001045(n+2) + A001045(n)^2. - Ezhilarasu Velayutham, Aug 30 2019
a(n) = 1 + 3*Sum_{k=0..n} binomial(2*n, n+k)*(k|9), where (k|9) is the Jacobi symbol. - Greg Dresden, Oct 11 2022
a(n) = Sum_{k = 0..n} binomial(2*n+1, 2*k) = Sum_{k = 0..n} binomial(2*n+1, 2*k+1). - Sela Fried, Mar 23 2023

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A006127 a(n) = 2^n + n.

Original entry on oeis.org

1, 3, 6, 11, 20, 37, 70, 135, 264, 521, 1034, 2059, 4108, 8205, 16398, 32783, 65552, 131089, 262162, 524307, 1048596, 2097173, 4194326, 8388631, 16777240, 33554457, 67108890, 134217755, 268435484, 536870941, 1073741854, 2147483679, 4294967328, 8589934625
Offset: 0

Views

Author

Keywords

Comments

For numbers m=n+2^n such that equation x=2^(m-x) has solution x=2^n, see A103354. - Zak Seidov, Mar 23 2005
Primes of the form x^x+1 must be of the form 2^2^(a(n))+1, that is, Fermat number F_(a(n)) (Sierpiński 1958). - David W. Wilson, May 08 2005
a(n) = n-th Mersenne number + n + 1 = A000225(n) + n + 1. Partial sums of a(n) are A132925(n+1). - Jaroslav Krizek, Oct 16 2009
Intersection of A188916 and A188917: A188915(a(n)) = (2^n)^2 = 2^(2*n) = A000302(n). - Reinhard Zumkeller, Apr 14 2011
a(n) is also the number of all connected subtrees of a star tree, having n leaves. The star tree is a tree, where all n leaves are connected to one parent P. - Viktar Karatchenia, Feb 29 2016

Examples

			From _Viktar Karatchenia_, Feb 29 2016: (Start)
a(0) = 1. There are n=0 leaves, it is a trivial tree consisting of a single parent node P.
a(1) = 3. There is n=1 leaf, the tree is P-A, the subtrees are: 2 singles: P, A; 1 pair: P-A; 2+1 = 3 subtrees in total.
a(2) = 6. When n=2, the tree is P-A P-B, the subtrees are: 3 singles: P, A, B; 2 pairs: P-A, P-B; 1 triple: A-P-B (the whole tree); 3+2+1 = 6.
a(3) = 11. For n=3 leaf nodes, the tree is P-A P-B P-C, the subtrees are: 4 singles: P, A, B, C; 3 pairs: P-A, P-B, P-C; 3 triples: A-P-B, A-P-C, B-P-C; 1 quad: P-A P-B P-C (the whole tree); 4+3+3+1 = 11 in total.
a(4) = 20. For n=4 leaves, the tree is P-A P-B P-C P-D, the subtrees are: 5 singles: P, A, B, C, D; 4 pairs: P-A, P-B, P-C, P-D; 6 triples: A-P-B, A-P-C, B-P-C, A-P-D, B-P-D, C-P-D; 4 quads: P-A P-B P-C, P-A P-B P-D, P-A P-C P-D, P-B P-C P-D; the whole tree counts as 1; 5+4+6+4+1 = 20.
In general, for n leaves, connected to the parent node P, there will be: (n+1) singles; (n, 1) pairs; (n, 2) triples; (n, 3) quads; ... ; (n, n-1) subtrees having (n-1) edges; 1 whole tree, having all n edges. Thus, the total number of all distinct subtrees is: (n+1) + (n, 1) + (n, 2) + (n, 3) + ... + (n, n-1) + 1 = (n + (n, 0)) + (n, 1) + (n, 2) + (n, 3) + ... + (n, n-1) + (n, n) = n + (sum of all binomial coefficients of size n) = n + (2^n). (End)
		

References

  • John H. Conway, R. K. Guy, The Book of Numbers, Copernicus Press, p. 84.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A135227, A000079, A052944; A000051 (first differences).
Cf. A000325.

Programs

  • Haskell
    a006127 n = a000079 n + n
    a006127_list = s [1] where
       s xs = last xs : (s $ zipWith (+) [1..] (xs ++ reverse xs))
    Reinhard Zumkeller, May 19 2015, Feb 05 2011
    
  • Maple
    A006127:=(-1+z+z**2)/(2*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[2^n + n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
    Table[BitXOr(i, 2^i), {i, 1, 100}] (* Peter Luschny, Jun 01 2011 *)
    LinearRecurrence[{4,-5,2},{1,3,6},40] (* Harvey P. Dale, Feb 08 2023 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jul 19 2011
    
  • Python
    print([2**n + n for n in range(34)]) # Karl V. Keller, Jr., Aug 18 2020
    
  • Python
    def A006127(n): return (1<Chai Wah Wu, Jan 11 2023

Formula

Row sums of triangle A135227. - Gary W. Adamson, Nov 23 2007
Partial sums of A094373. G.f.: (1-x-x^2)/((1-x)^2(1-2x)). - Paul Barry, Aug 05 2004
Binomial transform of [1,2,1,1,1,1,1,...]. - Franklin T. Adams-Watters, Nov 29 2006
a(n) = 2*a(n-1) - n + 2 (with a(0)=1). - Vincenzo Librandi, Dec 30 2010
E.g.f.: exp(x)*(exp(x) + x). - Stefano Spezia, Dec 10 2021

A188916 Where squares occur in the union of squares and powers of 2.

Original entry on oeis.org

0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 14 2011

Keywords

Crossrefs

Cf. A188915, A188917, A010052, A006127 (subsequence).

Programs

Formula

A188915(a(n)) = A000290(n); A188915(A188917(n)) = A000079(n).

A188917 Where powers of 2 occur in the union of squares and powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 37, 51, 70, 97, 135, 189, 264, 371, 521, 734, 1034, 1459, 2059, 2908, 4108, 5805, 8205, 11599, 16398, 23185, 32783, 46356, 65552, 92698, 131089, 185381, 262162, 370746, 524307, 741475, 1048596, 1482931, 2097173, 2965842, 4194326, 5931664, 8388631
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 14 2011

Keywords

Comments

A188915(a(n)) = A000079(n); A188915(A188916(n)) = A000290(n).

Crossrefs

Programs

  • Haskell
    a188917 n = a188917_list !! n
    a188917_list = filter ((== 1) . a209229. a188915) [0..]
    -- Reinhard Zumkeller, May 19 2015
    
  • Maple
    seq(floor((n+1)/2) + floor(2^(n/2)), n=0..100); # Robert Israel, Jun 13 2019
  • Mathematica
    Table[Floor[(n+1)/2] + Floor[2^(n/2)], {n, 0, 50}] (* Paolo Xausa, Oct 01 2024 *)
  • Python
    from math import isqrt
    def A188917(n): return (n+1>>1)+isqrt(1<Chai Wah Wu, Oct 01 2024

Formula

a(n) = floor((n+1)/2) + floor(2^(n/2)). - Robert Israel, Jun 13 2019
Showing 1-4 of 4 results.