cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188919 Triangle read by rows: T(n,k) = number of permutations of length n with k inversions that avoid the "dashed pattern" 1-32.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 3, 3, 1, 1, 1, 2, 4, 7, 8, 9, 9, 6, 4, 1, 1, 1, 2, 4, 7, 13, 16, 22, 26, 29, 26, 23, 17, 10, 5, 1, 1, 1, 2, 4, 7, 13, 22, 31, 44, 60, 74, 89, 95, 98, 93, 82, 63, 47, 29, 15, 6, 1, 1, 1, 2, 4, 7, 13, 22, 38, 55, 83, 116, 160, 207, 259, 304, 347, 375, 386, 378, 348, 304, 249, 190, 131, 85, 46, 21, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 13 2011

Keywords

Comments

Row n has length 1 + binomial(n,2) and sum A000110(n) (a Bell number).

Examples

			Triangle begins:
1
1
1 1
1 1 2 1
1 1 2 4 3 3 1
1 1 2 4 7 8 9 9 6 4 1
...
		

Crossrefs

The column limits are given by A188920.

Programs

  • Maple
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
           add(b(u-j, o+j-1)*x^(o+j-1), j=1..u)+
           add(`if`(u=0, b(u+j-1, o-j)*x^(o-j), 0), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1, Sum[b[u-j, o+j-1]* x^(o+j-1), {j, 1, u}] + Sum[If[u == 0, b[u+j-1, o-j]*x^(o-j), 0], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)

Extensions

More terms from Andrew Baxter, May 17 2011.