A188920 a(n) is the limiting term of the n-th column of the triangle in A188919.
1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 169, 274, 434, 686, 1069, 1660, 2548, 3897, 5906, 8911, 13352, 19917, 29532, 43605, 64056, 93715, 136499, 198059, 286233, 412199, 591455, 845851, 1205687, 1713286, 2427177, 3428611, 4829563, 6784550, 9505840, 13284849
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Aug 20 2024: (Start) The a(0) = 1 through a(6) = 22 compositions: () (1) (2) (3) (4) (5) (6) (11) (12) (13) (14) (15) (21) (22) (23) (24) (111) (31) (32) (33) (112) (41) (42) (211) (113) (51) (1111) (122) (114) (212) (123) (221) (132) (311) (213) (1112) (222) (2111) (312) (11111) (321) (411) (1113) (1122) (2112) (2211) (3111) (11112) (21111) (111111) (End)
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..200
- A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
- Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011-2012.
- Wikipedia, Permutation pattern.
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
Crossrefs
Programs
-
Mathematica
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1, Sum[b[u - j, o + j - 1]*x^(o + j - 1), {j, 1, u}] + Sum[If[u == 0, b[u + j - 1, o - j]*x^(o - j), 0], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[0, n]]; Take[T[40], 40] (* Jean-François Alcover, Sep 15 2018, after Alois P. Heinz in A188919 *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Greater@@First/@Split[Reverse[#],LessEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 20 2024 *) - or - Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MatchQ[#,{_,y_,z_,_,x_,_}/;x<=y
Gus Wiseman, Aug 20 2024 *) -
PARI
B_x(i,N) = {my(x='x+O('x^N), f=(x^i)/(1-x^i)*prod(j=i+1,N-i,1/(1-x^j))); f} A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N, B_x(i,N)*prod(j=1,i-1,1+B_x(j,N)))); Vec(f)} A_x(60) \\ John Tyler Rascoe, Aug 23 2024
Formula
a(n) = 2^(n-1) - A375140(n).
G.f.: 1 + Sum_{i>0} (B(i,x) * Product_{j=1..i-1} (1 + B(j,x))) where B(i,x) = (x^i)/(1-x^i) * Product_{j>i} (1/(1-x^j)). - John Tyler Rascoe, Aug 23 2024
Extensions
More terms from Andrew Baxter, May 17 2011
a(30)-a(39) from Alois P. Heinz, Nov 14 2015
Comments