cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152297 Alternate binomial partial sums of binomial(2n,n)*binomial(3n,n) (A006480).

Original entry on oeis.org

1, 5, 79, 1427, 28447, 599435, 13100065, 293737085, 6713171455, 155700711995, 3653740285729, 86561367835805, 2067026079739921, 49689509437820933, 1201321507453119103, 29187308928225658787, 712192597620218620735
Offset: 0

Views

Author

Emanuele Munarini, Apr 14 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[2k,k]Binomial[3k,k](-1)^(n-k),{k,0,n}],{n,0,16}]
  • Maxima
    makelist(sum((-1)^(n-k)*binomial(n,k)*binomial(2*k,k)*binomial(3*k,k),k,0,n),n,0,16);

Formula

a(n) = sum((-1)^(n-k)*binomial(n,k)*binomial(2*k,k)*binomial(3*k,k),k=0..n).
D-finite with recurrence Recurrence: (n+3)^2*a(n+3)-(24*n^2+120*n+149)*a(n+2)-51*(n+2)^2*a(n+1)-26*(n+1)*(n+2)*a(n)=0.
E.g.f.: exp(-x)*F(1/3,2/3;1,1;27*x), where F(a1,a2;b1;z) is a hypergeometric series.
a(n) ~ 13*sqrt(3) * 26^n / (27*Pi*n). - Vaclav Kotesovec, Mar 02 2014

A188918 Alternate partial sums of binomial(2n,n)*binomial(3n,n) (A006480).

Original entry on oeis.org

1, 5, 85, 1595, 33055, 723701, 16429435, 382643525, 9082868245, 218790563255, 5332206228085, 131194789234955, 3253536973286245, 81224561099580155, 2039348104811147845, 51455631680563483835, 1303889832725451598495
Offset: 0

Views

Author

Emanuele Munarini, Apr 14 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[2k,k]Binomial[3k,k],{k,0,n}],{n,0,16}] (* fixed by Vaclav Kotesovec, Nov 27 2017 *)
  • Maxima
    makelist(sum(binomial(2*k,k)*binomial(3*k,k)*(-1)^(n-k),k,0,n),n,0,16);

Formula

a(n) = sum((-1)^(n-k)*binomial(2*k,k)*binomial(3*k,k),k=0..n).
Recurrence: (n+2)^2*a(n+2)-(26*n^2+77*n+56)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: F(1/3,2/3;1;27*x)/(1+x), where F(a1,a2;b1;z) is a hypergeometric series.
a(n) ~ 3^(3*n + 7/2) / (56*Pi*n). - Vaclav Kotesovec, Nov 27 2017
Showing 1-2 of 2 results.