A188918 Alternate partial sums of binomial(2n,n)*binomial(3n,n) (A006480).
1, 5, 85, 1595, 33055, 723701, 16429435, 382643525, 9082868245, 218790563255, 5332206228085, 131194789234955, 3253536973286245, 81224561099580155, 2039348104811147845, 51455631680563483835, 1303889832725451598495
Offset: 0
Programs
-
Mathematica
Table[Sum[(-1)^(n-k)*Binomial[2k,k]Binomial[3k,k],{k,0,n}],{n,0,16}] (* fixed by Vaclav Kotesovec, Nov 27 2017 *)
-
Maxima
makelist(sum(binomial(2*k,k)*binomial(3*k,k)*(-1)^(n-k),k,0,n),n,0,16);
Formula
a(n) = sum((-1)^(n-k)*binomial(2*k,k)*binomial(3*k,k),k=0..n).
Recurrence: (n+2)^2*a(n+2)-(26*n^2+77*n+56)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: F(1/3,2/3;1;27*x)/(1+x), where F(a1,a2;b1;z) is a hypergeometric series.
a(n) ~ 3^(3*n + 7/2) / (56*Pi*n). - Vaclav Kotesovec, Nov 27 2017