cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188951 Number of perfect powers (A001597) < 2^n.

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 10, 15, 22, 30, 41, 57, 81, 113, 155, 216, 298, 416, 582, 813, 1135, 1588, 2223, 3115, 4368, 6135, 8622, 12127, 17063, 24022, 33838, 47688, 67226, 94804, 133737, 188709, 266350, 376018, 530940, 749819, 1059096, 1496143, 2113801, 2986769
Offset: 0

Views

Author

T. D. Noe, Apr 20 2011

Keywords

Examples

			For n=3, the perfect powers smaller than 2^3=8 are: 1 and 4. So a(3) = 2.
		

Crossrefs

Cf. A001597, A070228, A070428 (perfect powers not exceeding 10^n).

Programs

  • Mathematica
    Join[{0,1}, Table[-Sum[MoebiusMu[x]*Floor[2^(n/x) - 1], {x, 2, n}], {n, 2, 50}]]
  • PARI
    a(n) = sum(k=1, 2^n-1, (k==1) || ispower(k)); \\ Michel Marcus, Apr 11 2016
    
  • Python
    from sympy import mobius, integer_nthroot
    def A188951(n): return int(sum(mobius(x)*(1-integer_nthroot(1<Chai Wah Wu, Aug 13 2024

Formula

a(n) = A070228(n) - 1 for n > 1. - Amiram Eldar, May 19 2022