cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189000 Bi-unitary multiperfect numbers.

Original entry on oeis.org

1, 6, 60, 90, 120, 672, 2160, 10080, 22848, 30240, 342720, 523776, 1028160, 1528800, 6168960, 7856640, 7983360, 14443520, 22932000, 23569920, 43330560, 44553600, 51979200, 57657600, 68796000, 133660800, 172972800, 779688000, 1476304896, 2339064000, 6840038400
Offset: 1

Views

Author

R. J. Mathar, Apr 15 2011

Keywords

Comments

All entries greater than 1 are even [Hagis].
14443520 is the first (only?) composite term not divisible by 3. Excluding the factor p=3, all composite terms <= 172972800 have nonincreasing exponents in the factorization (sorted by primes). - D. S. McNeil, Apr 15 2011
Wall shows that 6, 60, and 90 are the only bi-unitary perfect numbers. - Tomohiro Yamada, Apr 15 2017
McNeil's observation about exponents does not hold in general. Indeed, a(41) = 2^8 * 3^5 * 5^2 * 7 * 11 * 13^2 * 17. - Giovanni Resta, Apr 15 2017
a(43) > 4.66*10^12. - Giovanni Resta, Sep 07 2018
We include 1 here, although this is not "multi"-perfect. - R. J. Mathar, Sep 08 2018

Examples

			n=120 divides A188999(120)=360.
n=90 divides A188999(90)=180.
n=672 divides A188999(672)=2016.
		

Crossrefs

Cf. A007691 (analog for sigma).
Cf. A188999 (bi-unitary sigma), A318175, A318781 (the k coefficients).

Programs

  • Mathematica
    bsig[n_] := If[n == 1, 1, Block[{p, e}, Product[{p, e} = pe; (p^(e + 1) - 1)/(p - 1) - If[EvenQ[e], p^(e/2), 0], {pe, FactorInteger[n]}]]]; Select[Range[10^5], Mod[bsig[#], #] == 0 &] (* Giovanni Resta, Apr 15 2017 *)
  • PARI
    a188999(n) = {my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    isok(n) = ! frac(a188999(n)/n); \\ Michel Marcus, Sep 03 2018

Formula

{n | A188999(n)}.

Extensions

a(18)-a(27) by D. S. McNeil, Apr 15 2011
a(28)-a(31) from Giovanni Resta, Apr 15 2017
a(1)=1 inserted by Giovanni Resta, Sep 07 2018