cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A189024 Number of primes in the range (n - sqrt(n), n].

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1
Offset: 1

Views

Author

T. D. Noe, Apr 15 2011

Keywords

Comments

Note that the lower bound, n-sqrt(n), is excluded from the count and the upper range, n, is included. The last zero term appears to be a(126). See A189026 for special primes associated with this sequence. This sequence is related to Oppermann's conjecture that for any k > 1 there is a prime between k^2 - k and k^2.

Crossrefs

Programs

  • Mathematica
    cnt = 0; lastLower = 0; Table[lower = Floor[n - Sqrt[n]]; If[lastLower < lower && PrimeQ[lower], cnt--]; lastLower = lower; If[PrimeQ[n], cnt++]; cnt, {n, 100}]
    Table[PrimePi[n]-PrimePi[n-Sqrt[n]],{n,130}] (* Harvey P. Dale, Mar 26 2023 *)

A189026 There appear to be at least n primes in the range (x-sqrt(x), x] for all x >= a(n).

Original entry on oeis.org

127, 1367, 2531, 2539, 6007, 7457, 10061, 10847, 23531, 35797, 35801, 38557, 44497, 47111, 69767, 69809, 88321, 107687, 110419, 110431, 113723, 127217, 250673, 250681, 250687, 250703, 268487, 268493, 286381, 286393, 302563, 302567, 360947, 369821, 405199
Offset: 1

Views

Author

T. D. Noe, Apr 15 2011

Keywords

Comments

These terms exist only if a strong form of Oppermann's conjecture that for any k>1 there is a prime between k^2-k and k^2 is true. Note that every term is prime. Sequence A189024 gives the number of primes in the range (x-sqrt(x), x]. The index of the prime a(n), that is, primepi(a(n)), is approximately (2.4*n)^2. These primes are generated in a manner similar to the Ramanujan primes (A104272).

Crossrefs

A189027 There appear to be at least n primes in the range (x-2*sqrt(x), x] for all x >= a(n).

Original entry on oeis.org

2, 3, 37, 139, 331, 1409, 1423, 1427, 2239, 3163, 3181, 3511, 6547, 7433, 7457, 7487, 10061, 11777, 11779, 14401, 18899, 19081, 19373, 23537, 24763, 27617, 27673, 32027, 32051, 38113, 43573, 43579, 47269, 47279, 50839, 61463, 88643, 88651, 88657, 88729
Offset: 1

Views

Author

T. D. Noe, Apr 15 2011

Keywords

Comments

These terms exist only if a strong form of Legendre's conjecture that there is a prime between consecutive squares is true. Note that every term is prime. Sequence A189025 gives the number of primes in the range (x-2*sqrt(x), x]. The index of prime a(n), that is, primepi(a(n)), is approximately (5n)^2. These primes are generated in a manner similar to the Ramanujan primes (A104272).

Crossrefs

A192226 Numbers n such that all integers in the interval (n-2*sqrt(sqrt(n)), n] are composite.

Original entry on oeis.org

1, 28, 36, 96, 120, 121, 122, 123, 124, 125, 126, 146, 147, 148, 189, 190, 207, 208, 209, 210, 219, 220, 221, 222, 249, 250, 292, 302, 303, 304, 305, 306, 326, 327, 328, 329, 330, 346, 477, 478, 519, 520, 533, 534, 535, 536, 537, 538, 539, 540, 630, 672
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2011

Keywords

Comments

a(14432) = 191913030 is probably the last term. Any further terms must be greater than 1.5 * 10^18. - Charles R Greathouse IV, Jun 30 2011

Crossrefs

Programs

  • Mathematica
    Select[Range[700],NextPrime[#-2Sqrt[Sqrt[#]]]>#&] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    is(n)=for(k=0,sqrtnint(16*n-1,4),if(isprime(n-k), return(0))); 1 \\ Charles R Greathouse IV, Aug 26 2015

Extensions

a(12)-a(13) added, a(53)-a(56) corrected by Charles R Greathouse IV, Jun 30 2011

A192231 Numbers k without prime numbers in the range (k-3*sqrt(sqrt(k)), k].

Original entry on oeis.org

1, 123, 124, 125, 126, 306, 330, 538, 539, 540, 904, 905, 906, 1147, 1148, 1149, 1150, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1689, 1690, 1691, 1692, 1971, 1972, 2200, 2201
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2011

Keywords

Comments

a(934) = 20831532 is probably the last term. Any further terms must be greater than 1.5 * 10^18. - Charles R Greathouse IV, Jun 27 2011

Examples

			a(2)=123 because (123-3*sqrt(sqrt(123)), 123]=(123-9,9907.., 123]=(113,0092.., 123].
		

Crossrefs

Subsequence of A192226.

Programs

Extensions

a(2) added by Alonso del Arte, Jun 27 2011

A192227 Number of primes in the range (n - 2*sqrt(sqrt(n)), n].

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2011

Keywords

Comments

a(n) is probably positive for all n > 191913030. - Charles R Greathouse IV, Jul 01 2011

Crossrefs

Programs

  • Maple
    A192227 := proc(n) local nhi, nlo ; nhi := n ; nlo := floor( n-2*root[4](n)) ; numtheory[pi](nhi)-numtheory[pi](nlo) ; end proc; # R. J. Mathar, Jul 12 2011
  • Mathematica
    Table[PrimePi[n]-PrimePi[n-2*Sqrt[Sqrt[n]]],{n,90}] (* Harvey P. Dale, Feb 24 2018 *)

Formula

Conjecturally, a(n) ~ 2*n^(1/4)/log n. - Charles R Greathouse IV, Jul 01 2011
Showing 1-6 of 6 results.