cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189046 a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5)/60.

Original entry on oeis.org

0, 1, 7, 14, 42, 42, 462, 462, 858, 3003, 1001, 4004, 6188, 18564, 27132, 3876, 27132, 74613, 100947, 67298, 17710, 230230, 296010, 188370, 237510, 118755, 736281, 453096, 553784, 1344904, 324632
Offset: 0

Views

Author

Gary Detlefs, Apr 15 2011

Keywords

Comments

a(n) mod 2 has a period of 8, repeating [0,1,1,0,0,0,0,0].

Crossrefs

Cf. A000217 ( = lcm(n,n+1)/2), A021913, A067046, A067047, A067048.

Programs

  • Maple
    seq(lcm(n,n+1,n+2,n+3,n+4,n+5)/60,n=0..30)
  • Mathematica
    Table[(LCM@@(n+Range[0,5]))/60,{n,0,40}]  (* Harvey P. Dale, Apr 17 2011 *)
  • PARI
    a(n)=lcm([n..n+5])/60 \\ Charles R Greathouse IV, Sep 30 2016

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(4*(n^4 mod 5)+1)/(1800*((n^3 mod 4)+((n-1)^3 mod 4)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*(A021913(n-1)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*floor(((n-1) mod 4)/2+1)). - Gary Detlefs, Apr 22 2011
Sum_{n>=1} 1/a(n) = 92 + (54/5-18*sqrt(5)+6*sqrt(178-398/sqrt(5)))*Pi. - Amiram Eldar, Sep 29 2022