cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189073 Triangle read by rows: T(n,k) is the number of inversions in k-compositions of n for n >= 3, 2 <= k <= n-1.

Original entry on oeis.org

1, 1, 3, 2, 6, 6, 2, 12, 18, 10, 3, 18, 42, 40, 15, 3, 27, 78, 110, 75, 21, 4, 36, 132, 240, 240, 126, 28, 4, 48, 204, 460, 600, 462, 196, 36, 5, 60, 300, 800, 1290, 1302, 812, 288, 45, 5, 75, 420, 1300, 2490, 3108, 2548, 1332, 405, 55, 6, 90, 570, 2000, 4440, 6594, 6692, 4608, 2070, 550, 66
Offset: 3

Views

Author

N. J. A. Sloane, Apr 16 2011

Keywords

Comments

The Heibach et al. reference has a table for n <= 14.

Examples

			Triangle begins:
1;
1,  3;
2,  6,   6;
2, 12,  18,   10;
3, 18,  42,   40,   15;
3, 27,  78,  110,   75,   21;
4, 36, 132,  240,  240,  126,   28;
4, 48, 204,  460,  600,  462,  196,   36;
5, 60, 300,  800, 1290, 1302,  812,  288,   45;
5, 75, 420, 1300, 2490, 3108, 2548, 1332,  405,  55;
6, 90, 570, 2000, 4440, 6594, 6692, 4608, 2070, 550, 66;
...
T(5,3) = 6 because we have: 3+1+1, 1+3+1, 1+1+3, 2+2+1, 2+1+2, 1+2+2 having 2,1,0,2,1,0 inversions respectively. - _Geoffrey Critzer_, Mar 19 2014
		

Crossrefs

Row sums are A189052. The first column is A004526(n-1). Diagonal is A000217(n-2). Lower diagonal is A002411(n-3). 2nd lower diagonal is A001621(n-4).

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=2 then floor((n-1)/2)
        elif k>=n then 0
        else T(n-1, k) +k/(k-2) *T(n-1, k-1)
          fi
        end:
    seq(seq(T(n, k), k=2..n-1), n=3..13);  # Alois P. Heinz, Apr 17 2011
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 2, Floor[(n-1)/2], k >= n, 0, True, T[n-1, k] + k/(k-2)*T[n-1, k-1]]; Table[Table[T[n, k], {k, 2, n-1}], {n, 3, 13}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Alois P. Heinz *)

Formula

G.f.: (1-x)*x^3/((1+x)*(1-x-y*x)^3). - Geoffrey Critzer, Mar 19 2014