cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A279290 Sum of cubes of nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 65, 1, 217, 1, 577, 730, 1001, 1, 2009, 1, 2745, 3376, 4673, 1, 6778, 1, 9065, 9262, 10649, 1, 16345, 15626, 17577, 20413, 24761, 1, 31592, 1, 37441, 35938, 39305, 42876, 55226, 1, 54873, 59320, 73577, 1, 86310, 1, 95897, 95230, 97337, 1, 131033, 117650, 141626, 132652, 158249, 1, 183925, 166376
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2016

Keywords

Examples

			a(4) = 65 because 4 has 2 nonprime divisors {1,4} and 1^3 + 4^3 = 65.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #1^3 & ,  !PrimeQ[#1] & ], {n, 55}]
    Table[DivisorSigma[3, n] - DivisorSum[n, #1^3 & , PrimeQ[#1] & ], {n, 55}]
    Table[Total[Select[Divisors[n],!PrimeQ[#]&]^3],{n,60}] (* Harvey P. Dale, Aug 02 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); sigma(f, 3) - sum(i=1, #f~, f[i, 1]^3);} \\ Amiram Eldar, Jan 11 2025

Formula

a(n) = A001158(n) - A005064(n).
a(n) = 1 when n = 1 or n is prime.
a(p^k) = (p^(3*k+3) - 1)/(p^3 - 1) - p^3 when p is prime.
Showing 1-1 of 1 results.