cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189173 Integers m such that m^3 is the sum of squares of m consecutive integers.

Original entry on oeis.org

0, 1, 47, 2161, 99359, 4568353, 210044879, 9657496081, 444034774847, 20415942146881, 938689303981679, 43159292041010353, 1984388744582494559, 91238722958753739361, 4194996867358089516047, 192878617175513363998801, 8868221393206256654428799, 407745305470312292739725953, 18747415830241159209372965039
Offset: 1

Views

Author

Max Alekseyev, Apr 18 2011

Keywords

Programs

  • Mathematica
    LinearRecurrence[{46, -1}, {0, 1, 47}, 19] (* a(1) prepended by Georg Fischer, Apr 03 2019 *)
  • Maxima
    makelist(if n=1 then 0 else expand(((90*sqrt(33)-517)*(23+4*sqrt(33))^n-(90*sqrt(33)+517)*(23-4*sqrt(33))^n)/22),n,1,19); /* Bruno Berselli, May 31 2011 */
    
  • PARI
    my(x='x+O('x^19)); Vec(x^2*(1+x)/(1-46*x+x^2)) \\ Georg Fischer, Apr 03 2019

Formula

For n>3, a(n) = 46*a(n-1) - a(n-2).
G.f.: x^2*(1+x)/(1-46*x+x^2). - Bruno Berselli, Apr 19 2011
a(n) = ((-517+90*sqrt(33))*(23+4*sqrt(33))^n-(517+90*sqrt(33))*(23-4*sqrt(33))^n)/22 for n>1, a(1)=0. - Bruno Berselli, May 31 2011