A189202 Let s_k(n) denote the sum of digits of n in base k. Then a(n) is the smallest m>0 such that both s_2(m*(n-1)) and s_n(2*m*(n-1))/(n-1) are even, or a(n)=0, if such m does not exist.
3, 5, 5, 3, 13, 4, 9, 5, 11, 6, 19, 20, 15, 47, 17, 9, 19, 10, 21, 32, 23, 12, 37, 13, 40, 41, 29, 15, 46, 16, 33, 17, 35, 18, 37, 56, 39, 20, 41, 21, 85, 22, 45, 68, 47, 72, 73, 25, 51, 26, 79, 80, 109, 28, 57, 87, 59, 30, 91, 153, 63, 191, 65, 33, 67, 34, 69
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
- Vladimir Shevelev, "A new digital problem", SeqFan Discussion, Apr 2011.
Programs
-
Maple
s:= proc(n, b) local m, t; t:= 0; m:= n; while m<>0 do t:= t+ irem(m, b, 'm') od; t end: a:= proc(n) local m; for m while irem(s(m*(n-1), 2), 2)<>0 or irem(s(2*m*(n-1), n)/(n-1), 2)<>0 do od; m end: seq(a(n), n=2..100); # Alois P. Heinz, May 02 2011
-
Mathematica
s[n_, b_] := Module[{m, t}, t = 0; m = n; While[m != 0 , t = t + Mod[m, b]; m = Quotient[m, b]]; t]; a[n_] := Module[{m}, For[m = 1, Mod[s[m*(n-1), 2], 2] != 0 || Mod[s[2*m*(n-1), n]/(n-1), 2] != 0, m++]; m]; Table[a[n], {n, 2, 100}](* Jean-François Alcover, May 20 2025, after Alois P. Heinz *)
Comments