A189225 Entries in a 4-dimensional version of Pascal's triangle: quadrinomial coefficients of (a + b + c + d)^r.
1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 3, 3, 3, 3, 6, 6, 3, 6, 3, 1, 3, 3, 3, 6, 3, 1, 3, 3, 1, 1, 4, 4, 4, 6, 12, 12, 6, 12, 6, 4, 12, 12, 12, 24, 12, 4, 12, 12, 4, 1, 4, 4, 6, 12, 6, 4, 12, 12, 4, 1, 4, 6, 4, 1, 1, 5, 5, 5, 10, 20, 20, 10, 20, 10, 10, 30, 30, 30, 60, 30, 10, 30, 30, 10, 5, 20, 20, 30, 60, 30, 20, 60, 60, 20, 5, 20, 30, 20, 5, 1, 5, 5, 10, 20, 10, 10, 30, 30, 10, 5, 20, 30, 20, 5, 1, 5, 10, 10, 5, 1
Offset: 0
Examples
The 4th slice of this 4D simplex starts at a(35). It comprises a 3D tetrahedron of 35 terms whose sum is 256. It is organized as follows: 1 . 4 4 4 . 6 12 12 6 12 6 . 4 12 12 12 24 12 4 12 12 4 . 1 4 4 6 12 6 4 12 12 4 1 4 6 4 1
Programs
-
Mathematica
Flatten[Table[Binomial[r,p] Binomial[p,m] Binomial[m,k], {r,0,10}, {p,0,r}, {m,0,p}, {k,0,m}]] (* or *) Flatten[CoefficientList[CoefficientList[CoefficientList[CoefficientList[Series[1/(1-w-w*x-w*x*y-w*x*y*z), {w, 0, 5}], w], x], y], z]] (* Georg Fischer, Jun 01 2019 *)
Formula
S(r,p,m,k) = binomial(r,p)*binomial(p,m)*binomial(m,k) and occurs at a(n) in the above sequence where n = binomial(r+3,4) + binomial(p+2,3) + binomial(m+1,2) + binomial(k,1).
G.f.: 1/(1-w-w*x-w*x*y-w*x*y*z). - Georg Fischer, Jun 01 2019
Extensions
Example corrected by Dimitri Boscainos, Aug 16 2015
Comments