cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189234 Expansion of (5-4*x-12*x^2+6*x^3+3*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5).

Original entry on oeis.org

5, 1, 9, 4, 25, 16, 78, 64, 257, 256, 874, 1013, 3034, 3953, 10684, 15229, 38017, 58056, 136338, 219508, 491870, 824737, 1782735, 3083887, 6484514, 11489516, 23652443, 42688039, 86459608, 158270401, 316576903, 585868009, 1160673633, 2166063365, 4259693562
Offset: 0

Views

Author

L. Edson Jeffery, Apr 18 2011

Keywords

Comments

(Start) Let U be the unit-primitive matrix (see [Jeffery])
U=U_(11,1)=
(0 1 0 0 0)
(1 0 1 0 0)
(0 1 0 1 0)
(0 0 1 0 1)
(0 0 0 1 1).
Then a(n)=Trace(U^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0

Crossrefs

Unsigned version of A094650.

Programs

  • Mathematica
    CoefficientList[Series[(5-4x-12x^2+6x^3+3x^4)/(1-x-4x^2+3x^3+ 3x^4-x^5),{x,0,40}],x] (* or *) LinearRecurrence[{1,4,-3,-3,1},{5,1,9,4,25},40] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    Vec((5-4*x-12*x^2+6*x^3+3*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

G.f.: (5-4*x-12*x^2+6*x^3+3*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5).
a(n)=a(n-1)+4*a(n-2)-3*a(n-3)-3*a(n-4)+a(n-5), {a(m)}={5,1,9,4,25}, m=0..4.
a(n)=Sum_{k=1..5} (x_k)^n; x_k=2*(-1)^(k-1)*cos(k*Pi/11).