cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A216605 Expansion of g.f. (6 + 5*x - 20*x^2 - 12*x^3 + 12*x^4 + 3*x^5)/(1 + x - 5*x^2 - 4*x^3 + 6*x^4 + 3*x^5 - x^6).

Original entry on oeis.org

6, -1, 11, -4, 31, -16, 98, -64, 327, -256, 1126, -1024, 3958, -4083, 14116, -16189, 50887, -63768, 184958, -249547, 676626, -970771, 2488156, -3756867, 9188406, -14474916, 34049481, -55564474, 126540536, -212637571, 471398623, -811660849, 1759603367
Offset: 0

Views

Author

Roman Witula, Sep 10 2012

Keywords

Comments

Previous name was: a(n) is equal to the rational part (considering of the ring Z(sqrt(13))) of the numbers A(n) = ((sqrt(13) - 1)/2)*A(n-1) + A(n-2) + ((3-sqrt(13))/2)*A(n-3), with A(0) = 6, A(1) = sqrt(13) - 1, and A(2) = 11 - sqrt(13).
The Berndt-type sequence number 1 for the argument 2*Pi/13 defined by the following relation: a(n) + b(n)*sqrt(13) = A(n) = 2*(c(1)^n + c(3)^n + c(4)^n), where c(j) := 2*cos(2*Pi*j/13), j=1..6. The b(n) = A216486(n), n=0,1,..., are all positive integers. We note that we also have a(n) - b(n)*sqrt(13) = B(n) = 2*(c(2)^n + c(5)^n + c(6)^n) and the following recurrence relation holds: B(n) = -((sqrt(13)+ 1)/2)*B(n-1) + B(n-2) + ((3+sqrt(13))/2)*B(n-3), with B(0) = 6, B(1) = -sqrt(13) - 1, and B(2) = 11 + sqrt(13).
We note that 4*a(n) - a(n+2) is divisible by 13 for every n = 0,1,... .

Examples

			We have 4*a(2*n-1)=a(2*n+1) for every n = 1,2,...,5 and a(13) - 4*a(11) = 13. Further we have c(1)^3 + c(3)^3 + c(4)^3 = 4*(c(1) + c(3) + c(4)) since A(3) = 4*sqrt(13) - 4, c(2)^3 + c(5)^3 + c(6)^3 = 4*(c(2) + c(5) + c(6)) since B(3) = - 4*sqrt(13) - 4, 2 + c(1)^4 + c(3)^4 + c(4)^4 = 3*(c(1)^2 + c(3)^2 + c(4)^2) and 2 + c(2)^4 + c(5)^4 + c(6)^4 = 3*(c(2)^2 + c(5)^2 + c(6)^2).
		

References

  • R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and Their Applications, Congressus Numerantium, 201 (2010), 89-107.
  • R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

Crossrefs

Programs

  • Magma
    I:=[6,-1,11,-4,31,-16]; [n le 6 select I[n] else -Self(n-1)+5*Self(n-2)+4*Self(n-3)-6*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..35]]; // Vincenzo Librandi, Aug 30 2017
  • Mathematica
    LinearRecurrence[{-1, 5, 4, -6, -3, 1}, {6, -1, 11, -4, 31, -16}, 30]
    CoefficientList[Series[(6 + 5 x - 20 x^2 - 12 x^3 + 12 x^4 + 3 x^5)/(1 + x - 5 x^2 - 4 x^3 + 6 x^4 + 3 x^5 - x^6), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 30 2017 *)

Formula

G.f.: (6 + 5*x - 20*x^2 - 12*x^3 + 12*x^4 + 3*x^5)/(1 + x - 5*x^2 - 4*x^3 + 6*x^4 + 3*x^5 - x^6). - Bruno Berselli, Sep 11 2012
a(n) = -a(n-1) + 5*a(n-2) + 4*a(n-3) - 6*a(n-4) - 3*a(n-5) + a(n-6), which from the following decomposition can be generated (see Witula-Slota's and Witula's references for details): X^6 + X^5 - 5*X^4 - 4*X^3 + 6*X^2 + 3*X - 1 = ((X - c(1))*(X - c(3))*(X - c(4)))*((X - c(2))*(X - c(5))*(X - c(6))) = (X^3 + ((1 - sqrt(13))/2)*X^2 - X + (sqrt(13) - 3)/2)*(X^3 + ((1 + sqrt(13))/2)*X^2 - X - (sqrt(13) + 3)/2). - Roman Witula, Sep 11 2012

Extensions

New name using existing g.f. from Joerg Arndt, Feb 15 2024

A189235 Expansion of (5-16*x+6*x^2+10*x^3-2*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5).

Original entry on oeis.org

5, 4, 12, 25, 64, 159, 411, 1068, 2808, 7423, 19717, 52529, 140251, 375015, 1003770, 2688570, 7204696, 19313075, 51782613, 138861732, 372414289, 998851473, 2679146955, 7186319506, 19276417059, 51707411684, 138702360471, 372064319188
Offset: 0

Views

Author

L. Edson Jeffery, Apr 18 2011

Keywords

Comments

Same as A062883 preceded by 5.
Let U be the unit-primitive matrix (see [Jeffery])
U=U_(11,2)=
(0 0 1 0 0)
(0 1 0 1 0)
(1 0 1 0 1)
(0 1 0 1 1)
(0 0 1 1 1).
Then a(n)=Trace(U^n).
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0
Formulae given below are special cases of general one's defined and discussed in Witula-Slota's paper. For example a(n) = A(n;1), where A(n;d) := Sum_{k=1..5} (1 + 2d*cos(2Pi*k/11))^n, n=0,1,..., d in C. - Roman Witula, Jul 26 2012

References

  • R. Witula and D. Slota, Quasi-Fibonacci Numbers of Order 11, 10 (2007), J. Integer Seq., Article 07.8.5.

Crossrefs

Programs

  • Mathematica
    u = {{0, 0, 1, 0, 0}, {0, 1, 0, 1, 0}, {1, 0, 1, 0, 1}, {0, 1, 0, 1, 1}, {0, 0, 1, 1, 1}}; a[n_] := Tr[ MatrixPower[u, n] ]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 14 2013 *)
  • PARI
    Vec((5-16*x+6*x^2+10*x^3-2*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012

Formula

G.f.: (5-16*x+6*x^2+10*x^3-2*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5).
a(n)=4*a(n-1)-2*a(n-2)-5*a(n-3)+2*a(n-4)+a(n-5), {a(m)}=5,4,12,25,64, m=0..4.
a(n)=Sum_{k=1..5} ((x_k)^2-1)^n; x_k=2*(-1)^(k-1)*cos(k*Pi/11).

A189236 Expansion of (5-8*x-15*x^2+4*x^3+4*x^4)/(1-2*x-5*x^2+2*x^3+4*x^4+x^5).

Original entry on oeis.org

5, 2, 14, 32, 114, 347, 1142, 3649, 11826, 38111, 123139, 397443, 1283406, 4143479, 13378435, 43194542, 139463234, 450284986, 1453839839, 4694021537, 15155624819, 48933074467, 157990585613, 510105367936, 1646980994190, 5317619734147
Offset: 0

Author

L. Edson Jeffery, Apr 18 2011

Keywords

Comments

(Start) Let U be the unit-primitive matrix (see [Jeffery])
U=U_(11,3)=
(0 0 0 1 0)
(0 0 1 0 1)
(0 1 0 1 1)
(1 0 1 1 1)
(0 1 1 1 1).
Then a(n)=Trace(U^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[ (5-8x-15x^2+4x^3+4x^4)/ (1-2x-5x^2+2x^3+4x^4+x^5), {x,0,29}],x]  (* Harvey P. Dale, Apr 19 2011 *)
    LinearRecurrence[{2, 5, -2, -4, -1}, {5, 2, 14, 32, 114}, 30] (* T. D. Noe, Apr 19 2011 *)
  • PARI
    Vec((5-8*x-15*x^2+4*x^3+4*x^4)/(1-2*x-5*x^2+2*x^3+4*x^4+x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012

Formula

G.f.: (5-8*x-15*x^2+4*x^3+4*x^4)/(1-2*x-5*x^2+2*x^3+4*x^4+x^5).
a(n)=2*a(n-1)+5*a(n-2)-2*a(n-3)-4*a(n-4)-a(n-5), {a(m)}={5,2,14,32,114}, m=0..4.
a(n)=Sum_{k=1..5} ((x_k)^3-2*(x_k))^n; x_k=2*(-1)^(k-1)*cos(k*Pi/11).
Series expansion of g.f. at x=infinity gives -A062883 and all but the first term of -A189235.

A189237 Expansion of (5-12*x-9*x^2+8*x^3+x^4)/(1-3*x-3*x^2+4*x^3+x^4-x^5).

Original entry on oeis.org

5, 3, 15, 42, 155, 533, 1884, 6604, 23219, 81555, 286555, 1006734, 3537032, 12426742, 43659386, 153390077, 538911123, 1893376346, 6652069455, 23370962220, 82110068595, 288480349402, 1013528712002, 3560868017067, 12510529683224
Offset: 0

Author

L. Edson Jeffery, Apr 18 2011

Keywords

Comments

(Start) Let U be the unit-primitive matrix (see [Jeffery])
U=U_(11,4)=
(0 0 0 0 1)
(0 0 0 1 1)
(0 0 1 1 1)
(0 1 1 1 1)
(1 1 1 1 1).
Then a(n)=Trace(U^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(5-12x-9x^2+8x^3+x^4)/(1-3x-3x^2+4x^3+x^4-x^5), {x,0,30}],x] (* or *) LinearRecurrence[{3,3,-4,-1,1},{5,3,15,42,155},30] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    Vec((5-12*x-9*x^2+8*x^3+x^4)/(1-3*x-3*x^2+4*x^3+x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

G.f.: (5-12*x-9*x^2+8*x^3+x^4)/(1-3*x-3*x^2+4*x^3+x^4-x^5).
a(n)=3*a(n-1)+3*a(n-2)-4*a(n-3)-a(n-4)+a(n-5), {a(m)}={5,3,15,42,155}, m=0..4.
a(n)=Sum_{k=1..5} ((x_k)^4-3*(x_k)^2+1)^n; x_k=2*(-1)^(k-1)*cos(k*Pi/11).
Series expansion of g.f. at x=infinity gives -A189234(n+1).

A209235 Rectangular array read by antidiagonals, with entry k in row n given by T(n,k) = 2^{k-1}*Sum_{j=1..n} (cos((2*j-1)*Pi/(2*n+1)))^{k-1}.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 3, 1, 5, 1, 5, 4, 1, 6, 1, 7, 4, 7, 1, 8, 1, 11, 4, 19, 16, 18, 1, 9, 1, 13, 4, 25, 16, 38, 29, 1, 10, 1, 15, 4, 31, 16, 58, 57, 47, 1, 11, 1, 17, 4, 37, 16, 78, 64, 117, 76, 1, 12, 1, 19, 4, 43, 16, 98, 64, 187, 193, 123, 1
Offset: 1

Author

L. Edson Jeffery, Jan 12 2013

Keywords

Comments

Antidiagonal sums: {1,3,5,9,16,26,46,78,136,...}.

Examples

			Array begins as
.1..1...1..1...1...1
.2..1...3..4...7..11
.3..1...5..4..13..16
.4..1...7..4..19..16
.5..1...9..4..25..16
.6..1..11..4..31..16
		

Crossrefs

Formula

T(n,k) = 2^{k-1}*Sum_{j=1..n} (cos((2*j-1)*Pi/(2*n+1)))^{k-1}.
Empirical g.f. for row n: F(x) = (Sum_{u=0..n-1} A122765(n,n-1-u)*x^u)/(Sum_{v=0..n} A108299(n,v)*x^v).
Empirical: odd column first differences tend to A000984 = {1, 2, 6, 20, 70, 252, ...} (central binomial coefficients).

A376498 Array read by ascending antidiagonals: A(n, k) = 2^k*Sum_{j=1..n} cos((2*j - 1)*Pi/(2*n + 1))^k.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 1, 3, 1, 0, 5, 1, 5, 4, 1, 0, 6, 1, 7, 4, 7, 1, 0, 7, 1, 9, 4, 13, 11, 1, 0, 8, 1, 11, 4, 19, 16, 18, 1, 0, 9, 1, 13, 4, 25, 16, 38, 29, 1, 0, 10, 1, 15, 4, 31, 16, 58, 57, 47, 1, 0, 11, 1, 17, 4, 37, 16, 78, 64, 117, 76, 1, 0
Offset: 0

Author

Cheng-Jun Li, Sep 25 2024

Keywords

Comments

It is only a conjecture that the A(n, k) are always integers.

Examples

			Array starts:
[0] 0, 0,  0, 0,  0,  0,   0,  0,   0,   0,    0,    0, ...  [A000004]
[1] 1, 1,  1, 1,  1,  1,   1,  1,   1,   1,    1,    1, ...  [A000012]
[2] 2, 1,  3, 4,  7, 11,  18, 29,  47,  76,  123,  199, ...  [A000032]
[3] 3, 1,  5, 4, 13, 16,  38, 57, 117, 193,  370,  639, ...  [A096975]
[4] 4, 1,  7, 4, 19, 16,  58, 64, 187, 247,  622,  925, ...  [A094649]
[5] 5, 1,  9, 4, 25, 16,  78, 64, 257, 256,  874, 1013, ...  [A189234]
[6] 6, 1, 11, 4, 31, 16,  98, 64, 327, 256, 1126, 1024, ...  [A216605]
[7] 7, 1, 13, 4, 37, 16, 118, 64, 397, 256, 1378, 1024, ...
[8] 8, 1, 15, 4, 43, 16, 138, 64, 467, 256, 1630, 1024, ...
[9] 9, 1, 17, 4, 49, 16, 158, 64, 537, 256, 1882, 1024, ...
		

Crossrefs

Rows: A000004 (n=0), A000012 (n=1), A000032 (n=2), A096975 (n=3), A094649 (n=4), A189234 (n=5), A216605 (n=6, with alternate signs).
Columns: A001477 (k=0), A057427 (k=1).
Cf. A180870.

Programs

  • PARI
    A(n, k) = 2^k*sum(j=1, n, (cos((2*j-1)*Pi/(2*n+1)))^k, x=0)

Formula

A(n + k, 2*k - 1) = A(k, 2*k-1) = 4^(k-1).
Let P_n(x) be the polynomial: Sum_{k=0..n} x^k*A180870(n, k). Let R_n(x) be the polynomial Product_{k=0..n} x-Roots(P_n, k)^m. A(n, k) = abs([x^1] R_n(x))/2^(m*(n-1)), for n > 0. - Thomas Scheuerle, Oct 07 2024
Showing 1-6 of 6 results.