cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A189283 Number of permutations p of 1,2,...,n satisfying p(i+4)-p(i)<>4 for all 1<=i<=n-4.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 628, 4062, 30360, 255186, 2414292, 25350954, 292378968, 3673917102, 49928069188, 729534877758, 11403682481112, 189862332575658, 3354017704180052, 62654508729565554, 1233924707891272728, 25550498290562247438
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[4,4] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 7/n + 12/n^2)/e.

Extensions

Terms a(26)-a(27) from Vaclav Kotesovec, Apr 20 2012

A189284 Number of permutations p of 1,2,...,n satisfying p(i+5)-p(i)<>5 for all 1<=i<=n-5.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 696, 4572, 34260, 290328, 2751480, 28686024, 328764732, 4106158164, 55495145304, 806797105320, 12554890849992, 208164423163908, 3663256621120548, 68188490015132040, 1338490745511631080, 27630826605742438968
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[5,5] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 9/n + 20/n^2)/e.

Extensions

Terms a(25)-a(26) from Vaclav Kotesovec, Apr 20 2012

A189844 Number of ways to place n nonattacking composite pieces rook + semi-rider[3,3] on an n X n chessboard.

Original entry on oeis.org

1, 2, 6, 22, 98, 534, 3334, 23724, 191820, 1704532, 16689868, 179288892, 2069311996, 25760882744, 345073745880, 4900331447624
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying p(j+3k)-p(j)<>3k for all j>=1, k>=1, j+3k<=n.
For information about semi-pieces see semi-bishop (A187235) and semi-queen (A099152).

Crossrefs

A189285 Number of permutations p of 1,2,...,n satisfying p(i+6)-p(i)<>6 for all 1<=i<=n-6.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4920, 37488, 319644, 3033264, 31784280, 364902480, 4538652840, 61102571376, 885045657564, 13722397569072, 226742901078120, 3977354871110160, 73816786920489720, 1444940702597713008, 29750236302549282948
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[6,6] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 11/n + 30/n^2)/e.
Generally (for this sequence is d=6): 1/e*(1+(2d-1)/n+d*(d-1)/n^2).

Extensions

Terms a(23)-a(24) from Vaclav Kotesovec, Apr 21 2012
Showing 1-4 of 4 results.