cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189316 Expansion of g.f. 5*(1-x-x^2)/((1+x)*(1-3*x+x^2)).

Original entry on oeis.org

5, 5, 15, 35, 95, 245, 645, 1685, 4415, 11555, 30255, 79205, 207365, 542885, 1421295, 3720995, 9741695, 25504085, 66770565, 174807605, 457652255, 1198149155, 3136795215, 8212236485, 21499914245, 56287506245, 147362604495, 385800307235, 1010038317215
Offset: 0

Views

Author

L. Edson Jeffery, Apr 20 2011

Keywords

Comments

(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,2)=
(0 0 1 0 0)
(0 1 0 1 0)
(1 0 1 0 1)
(0 1 0 2 0)
(0 0 2 0 1).
Then a(n)=Trace(A^n). For m=1,2,..., A^(m) can also be written
A^(m)=
[ F(m-1)^2 0 F(m)^2 0 F(m-1)*F(m) ]
[ 0 F(2*m-1) 0 F(2*m) 0 ]
[ F(m)^2 0 F(m+1)^2 0 F(m)*F(m+1) ]
[ 0 F(2*m) 0 F(2*m+1) 0 ]
[ 2*F(m-1)*F(m) 0 2*F(m)*F(m+1) 0 F(2*m+1)-F(m)*F(m+1) ],
where F(m-1)=A000045(n) are the Fibonacci numbers and m=n+1. Hence also a(n+1)=Trace(A^(n+1))=F(m-1)^2+F(2*m-1)+F(m+1)^2+2*F(2*m+1)-F(m)*F(m+1). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix A_(N,r), 0

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[5 (1-x-x^2)/((1+x)(1-3x+x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{2,2,-1},{5,5,15},40] (* Harvey P. Dale, Nov 26 2016 *)

Formula

G.f.: 5*(1-x-x^2)/((1+x)*(1-3*x+x^2)).
a(n) = 2*a(n-1)+2*a(n-2)-a(n-3), n>2, a(0)=5, a(1)=5, a(2)=15.
a(n) = Sum_{k=1..5} ((w_k)^2-1)^n, w_k = 2*cos((2*k-1)*Pi/10).
a(n) = (-1)^n+2*(1/tau^(2*n)+tau^(2*n)), tau = (1+sqrt(5))/2=1.618033....
a(n) = 5*A061646(n), n>=0 (offset for A061646 is -1).
E.g.f.: cosh(x) + 4*exp(3*x/2)*cosh(sqrt(5)*x/2) - sinh(x). - Stefano Spezia, Jul 09 2024