cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189317 Expansion of 5*(1-6*x+x^2)/(1-10*x+5*x^2).

Original entry on oeis.org

5, 20, 180, 1700, 16100, 152500, 1444500, 13682500, 129602500, 1227612500, 11628112500, 110143062500, 1043290062500, 9882185312500, 93605402812500, 886643101562500, 8398404001562500, 79550824507812500, 753516225070312500, 7137408128164062500
Offset: 0

Views

Author

L. Edson Jeffery, Apr 20 2011

Keywords

Comments

(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,3)=
(0 0 0 1 0)
(0 0 1 0 1)
(0 1 0 2 0)
(1 0 2 0 1)
(0 2 0 2 0).
Then a(n)=Trace(A^(2*n)). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers (here they are A^(2*n)) of a unit-primitive matrix A_(N,r) (0

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[5*(1-6x+x^2)/(1-10x+5x^2),{x,0,30}],x] (* or *) Join[ {5},LinearRecurrence[{10,-5},{20,180},30]] (* Harvey P. Dale, Apr 02 2013 *)
  • PARI
    Vec(5*(1-6*x+x^2)/(1-10*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012

Formula

G.f.: 5*(1-6*x+x^2)/(1-10*x+5*x^2).
a(n)=10*a(n-1)-5*a(n-2), n>2, a(0)=5, a(1)=20, a(2)=180.
a(n)=Sum_{k=1..5} ((w_k)^3-2*w_k)^(2*n), w_k=2*cos((2*k-1)*Pi/10).
a(n)=2*((5-2*Sqrt(5))^n+(5+2*Sqrt(5))^n), for n>0, with a(0)=5.