A189315 Expansion of g.f. 5*(1-3*x+x^2)/(1-5*x+5*x^2).
5, 10, 30, 100, 350, 1250, 4500, 16250, 58750, 212500, 768750, 2781250, 10062500, 36406250, 131718750, 476562500, 1724218750, 6238281250, 22570312500, 81660156250, 295449218750, 1068945312500, 3867480468750, 13992675781250, 50625976562500, 183166503906250, 662702636718750
Offset: 0
A189316 Expansion of g.f. 5*(1-x-x^2)/((1+x)*(1-3*x+x^2)).
5, 5, 15, 35, 95, 245, 645, 1685, 4415, 11555, 30255, 79205, 207365, 542885, 1421295, 3720995, 9741695, 25504085, 66770565, 174807605, 457652255, 1198149155, 3136795215, 8212236485, 21499914245, 56287506245, 147362604495, 385800307235, 1010038317215
Offset: 0
Comments
(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,2)=
(0 0 1 0 0)
(0 1 0 1 0)
(1 0 1 0 1)
(0 1 0 2 0)
(0 0 2 0 1).
Then a(n)=Trace(A^n). For m=1,2,..., A^(m) can also be written
A^(m)=
[ F(m-1)^2 0 F(m)^2 0 F(m-1)*F(m) ]
[ 0 F(2*m-1) 0 F(2*m) 0 ]
[ F(m)^2 0 F(m+1)^2 0 F(m)*F(m+1) ]
[ 0 F(2*m) 0 F(2*m+1) 0 ]
[ 2*F(m-1)*F(m) 0 2*F(m)*F(m+1) 0 F(2*m+1)-F(m)*F(m+1) ],
where F(m-1)=A000045(n) are the Fibonacci numbers and m=n+1. Hence also a(n+1)=Trace(A^(n+1))=F(m-1)^2+F(2*m-1)+F(m+1)^2+2*F(2*m+1)-F(m)*F(m+1). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix A_(N,r), 0
Links
- L. E. Jeffery, Unit-primitive matrices.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Mathematica
CoefficientList[Series[5 (1-x-x^2)/((1+x)(1-3x+x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{2,2,-1},{5,5,15},40] (* Harvey P. Dale, Nov 26 2016 *)
Formula
G.f.: 5*(1-x-x^2)/((1+x)*(1-3*x+x^2)).
a(n) = 2*a(n-1)+2*a(n-2)-a(n-3), n>2, a(0)=5, a(1)=5, a(2)=15.
a(n) = Sum_{k=1..5} ((w_k)^2-1)^n, w_k = 2*cos((2*k-1)*Pi/10).
a(n) = (-1)^n+2*(1/tau^(2*n)+tau^(2*n)), tau = (1+sqrt(5))/2=1.618033....
E.g.f.: cosh(x) + 4*exp(3*x/2)*cosh(sqrt(5)*x/2) - sinh(x). - Stefano Spezia, Jul 09 2024
A189318 Expansion of 5*(1-2*x)/(1-3*x-2*x^2+4*x^3).
5, 5, 25, 65, 225, 705, 2305, 7425, 24065, 77825, 251905, 815105, 2637825, 8536065, 27623425, 89391105, 289275905, 936116225, 3029336065, 9803137025, 31723618305, 102659784705, 332214042625, 1075067224065, 3478990618625, 11258250133505
Offset: 0
Comments
(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=Trace(A^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix A_(N,r) (0
Links
- L. E. Jeffery, Unit-primitive matrices.
- Index entries for linear recurrences with constant coefficients, signature (3, 2, -4).
Programs
-
Mathematica
CoefficientList[Series[5(1-2x)/(1-3x-2x^2+4x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,2,-4},{5,5,25},30] (* Harvey P. Dale, Jun 02 2014 *)
-
PARI
Vec(5*(1-2*x)/(1-3*x-2*x^2+4*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
Formula
G.f.: 5*(1-2*x)/(1-3*x-2*x^2+4*x^3).
a(n)=3*a(n-1)+2*a(n-2)-4*a(n-3), n>3, a(0)=5, a(1)=5, a(2)=25, a(3)=65.
a(n)=Sum_{k=1..5} ((w_k)^4-3*(w_k)^2+1)^n, w_k=2*cos((2*k-1)*Pi/10).
a(n)=1+2*(1-Sqrt(5))^n+2*(1+Sqrt(5))^n.
a(n)=5*A052899(n).
A189334 Expansion of g.f. (1-6*x+x^2)/(1-10*x+5*x^2).
1, 4, 36, 340, 3220, 30500, 288900, 2736500, 25920500, 245522500, 2325622500, 22028612500, 208658012500, 1976437062500, 18721080562500, 177328620312500, 1679680800312500, 15910164901562500, 150703245014062500, 1427481625632812500, 13521300031257812500, 128075592184414062500
Offset: 0
Comments
(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,3)=
(0 0 0 1 0)
(0 0 1 0 1)
(0 1 0 2 0)
(1 0 2 0 1)
(0 2 0 2 0).
Then a(n)=(1/5)*Trace(A^(2*n)). (See also A189317.) (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers (here they are A^(2*n)) of a unit-primitive matrix A_(N,r) (0
Links
- L. E. Jeffery, Unit-primitive matrices.
- Index entries for linear recurrences with constant coefficients, signature (10,-5).
Programs
-
Mathematica
LinearRecurrence[{10,-5},{1,4,36},22] (* Stefano Spezia, Jul 09 2024 *)
Formula
a(n) = 10*a(n-1) - 5*a(n-2), n>2, a(0)=1, a(1)=4, a(2)=36.
a(n) = (1/5)*Sum_{k=1..5} ((w_k)^3-2*w_k)^(2*n), w_k = 2*cos((2*k-1)*Pi/10).
From Stefano Spezia, Jul 09 2024: (Start)
a(n) = 2*((5 - 2*sqrt(5))^n + (5 + 2*sqrt(5))^n)/5 for n > 0.
E.g.f.: (1 + 4*exp(5*x)*cosh(2*sqrt(5)*x))/5. (End)
Extensions
a(20)-a(21) from Stefano Spezia, Jul 09 2024
Comments
Links
Crossrefs
Programs
Magma
Mathematica
PARI
Formula