cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189375 Expansion of 1/((1-x)^5*(x^3+x^2+x+1)^3).

Original entry on oeis.org

1, 2, 3, 4, 8, 12, 16, 20, 30, 40, 50, 60, 80, 100, 120, 140, 175, 210, 245, 280, 336, 392, 448, 504, 588, 672, 756, 840, 960, 1080, 1200, 1320, 1485, 1650, 1815, 1980, 2200, 2420, 2640, 2860, 3146, 3432, 3718, 4004, 4368
Offset: 0

Views

Author

Johannes W. Meijer, Apr 29 2011

Keywords

Comments

The Gi1 triangle sums of A139600 lead to the sequence given above, see the formulas. For the definitions of the Gi1 and other triangle sums see A180662.

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(1/((1-x)^5*(x^3+x^2+x+1)^3), x, n+1), x, n):
    seq(a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[1/((1-x)^5(x^3+x^2+x+1)^3),{x,0,50}],x] (* or *) LinearRecurrence[{2,-1,0,3,-6,3,0,-3,6,-3,0,1,-2,1},{1,2,3,4,8,12,16,20,30,40,50,60,80,100},50] (* Harvey P. Dale, Dec 05 2014 *)

Formula

a(n) = sum(A056594(n-k)*A115269(k), k=0..n).
Gi1(n) = A189375(n-4) - A189375(n-5) - A189375(n-8) + 2*A189375(n-9) with A189375(n)=0 for n <= -1.
a(n) = (2*n^4+56*n^3+538*n^2+2044*n+2469+3*((2*n^2+28*n+89)*(-1)^n+(4*(-1)^((2*n-1+(-1)^n)/4)*(n^2+16*n+57-(n^2+12*n+29)*(-1)^n))))/3072. - Luce ETIENNE, Jun 25 2015