A189375 Expansion of 1/((1-x)^5*(x^3+x^2+x+1)^3).
1, 2, 3, 4, 8, 12, 16, 20, 30, 40, 50, 60, 80, 100, 120, 140, 175, 210, 245, 280, 336, 392, 448, 504, 588, 672, 756, 840, 960, 1080, 1200, 1320, 1485, 1650, 1815, 1980, 2200, 2420, 2640, 2860, 3146, 3432, 3718, 4004, 4368
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 3, -6, 3, 0, -3, 6, -3, 0, 1, -2, 1).
Programs
-
Maple
a:= n-> coeff(series(1/((1-x)^5*(x^3+x^2+x+1)^3), x, n+1), x, n): seq(a(n), n=0..50);
-
Mathematica
CoefficientList[Series[1/((1-x)^5(x^3+x^2+x+1)^3),{x,0,50}],x] (* or *) LinearRecurrence[{2,-1,0,3,-6,3,0,-3,6,-3,0,1,-2,1},{1,2,3,4,8,12,16,20,30,40,50,60,80,100},50] (* Harvey P. Dale, Dec 05 2014 *)
Formula
a(n) = (2*n^4+56*n^3+538*n^2+2044*n+2469+3*((2*n^2+28*n+89)*(-1)^n+(4*(-1)^((2*n-1+(-1)^n)/4)*(n^2+16*n+57-(n^2+12*n+29)*(-1)^n))))/3072. - Luce ETIENNE, Jun 25 2015
Comments