A189390 The maximum possible value for the apex of a triangle of numbers whose base consists of a permutation of the numbers 0 to n, and each number in a higher row is the sum of the two numbers directly below it.
0, 1, 5, 16, 45, 116, 286, 680, 1581, 3604, 8106, 18008, 39650, 86568, 187804, 404944, 868989, 1856180, 3950194, 8376056, 17708310, 37329016, 78499620, 164682416, 344789970, 720430216, 1502768996, 3129355120, 6507087396, 13510929104
Offset: 0
Examples
For n = 4 consider the triangle: 45 21 24 8 13 11 2 6 7 4 0 2 4 3 1 This triangle has 45 at its apex and no other such triangle with the numbers 0 through 4 on its base has a larger apex value, so a(4) = 45.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..1000
- Steven Finch, How far might we walk at random?, arXiv:1802.04615 [math.HO], 2018.
Programs
-
Maple
a:= proc(n) return add((4*k+1)*binomial(n,k), k=0..floor((n-1)/2)) + `if`(n mod 2=0, n*binomial(n,n/2), 0):end: seq(a(n), n=0..50);
-
Mathematica
a[n_] := Sum[(4k+1)*Binomial[n, k], {k, 0, Floor[(n-1)/2]}] + If[EvenQ[n], n*Binomial[n, n/2], 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 18 2017, translated from Maple *)
-
PARI
A189390(n)=sum(i=0, (n-1)\2, (4*i+1)*binomial(n, i), if(!bittest(n,0),n*binomial(n, n\2))) \\ - M. F. Hasler, Jan 24 2012
-
Python
from math import comb def A189390(n): return sum(((k<<2)|1)*comb(n,k) for k in range(n+1>>1))+(0 if n&1 else n*comb(n,n>>1)) # Chai Wah Wu, Oct 28 2024
Formula
a(n) = Sum_{k=0..floor((n-1)/2)} (4*k+1)*C(n,k) + (n+1 mod 2)*n*C(n,n/2).
a(n) = n*2^n-A189391(n). - M. F. Hasler, Jan 24 2012
a(n) = Sum_{k=0..n} k * C(n,floor(k/2)) = Sum_{k=0..n} k*A107430(n,k). - Alois P. Heinz, Feb 02 2012
G.f.: (2*x-sqrt(1-4*x^2)+1) / (2*(2*x-1)^2). - Alois P. Heinz, Feb 09 2012
D-finite with recurrence n*a(n) -4*n*a(n-1) +12*a(n-2) +16*(n-3)*a(n-3) +16*(-n+3)*a(n-4)=0. - R. J. Mathar, Jul 28 2016
D-finite with recurrence n*(2*n-3)*a(n) +2*(-2*n^2-n+5)*a(n-1) +4*(-2*n^2+9*n-5)*a(n-2) +8*(2*n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jul 28 2016
a(n) = Sum_{k=1..n} Sum_{i=1..k} C(n,floor((n-k)/2)+i). - Stefano Spezia, Aug 20 2019
Comments