cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189393 a(n) = phi(n^4).

Original entry on oeis.org

1, 8, 54, 128, 500, 432, 2058, 2048, 4374, 4000, 13310, 6912, 26364, 16464, 27000, 32768, 78608, 34992, 123462, 64000, 111132, 106480, 267674, 110592, 312500, 210912, 354294, 263424, 682892, 216000, 893730, 524288, 718740, 628864, 1029000, 559872
Offset: 1

Views

Author

Vincenzo Librandi, Apr 21 2011

Keywords

Crossrefs

Cf. A002618 (phi(n^2)), A053191 (phi(n^3)), A238533 (phi(n^5)), A239442 (phi(n^7)), A239443 (phi(n^9)).

Programs

  • Magma
    [ n^3*EulerPhi(n) : n in [1..100] ]
    
  • Mathematica
    EulerPhi[Range[100]^4] (* T. D. Noe, Dec 27 2011 *)
  • PARI
    vector(66,n,n^3*eulerphi(n))  /* Joerg Arndt, Apr 22 2011 */

Formula

a(n) = n^3*phi(n).
Dirichlet g.f.: zeta(s - 4) / zeta(s - 3). The n-th term of the Dirichlet inverse is n^3 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 6*n^5 / (5*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^5 - p^4 - p + 1)) = 1.15762316629211803144... - Amiram Eldar, Dec 06 2020