A189657 Start with n, apply k->2k+1 until a semiprime is reached; sequence gives the semiprimes.
15, 95, 15, 9, 95, 55, 15, 35, 39, 21, 95, 25, 55, 119, 511, 33, 35, 303, 39, 335, 87, 91, 95, 49, 51, 215, 55, 57, 119, 123, 511, 65, 543, 69, 143, 295, 303, 77, 159, 327, 335, 85, 87, 5759, 91, 93, 95, 391, 799, 203, 415, 54271, 215, 219, 111, 3647, 115
Offset: 0
Examples
a(0) = 15 in 4 steps because 2*(2*(2*((2*0)+1)+1)+1)+1 = 15 = 3*5 is semiprime. a(1) = 15 in 3 steps because 2*(2*((2*1) + 1)+1)+1 = 15 = 3*5 a(2) = 95 in 5 steps because 2*(2*(2*(2*(2*2 + 1)+1)+1)+1)+1 = 95 = 5*19.
Programs
-
Mathematica
semiPrimeQ[n_] := Total[FactorInteger[n]][[2]]==2; Table[k = n; While[k = 2 k + 1; ! semiPrimeQ[k]]; k, {n, 100}] (* T. D. Noe, Apr 29 2011 *)
Extensions
Extended by T. D. Noe, Apr 29 2011
Comments