cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189760 Least nonnegative number whose n-th arithmetic derivative (A003415) is zero and lower derivatives are nonzero.

Original entry on oeis.org

0, 1, 2, 6, 9, 14, 33, 62, 177, 414, 1155, 1719, 2625, 4018, 6849, 9770, 17675, 30206, 90609, 260343, 336006, 757995, 1290874, 2029875, 4059746, 7037655, 17594075, 50850483, 68589598, 186888243, 373659254, 1884639669
Offset: 0

Views

Author

T. D. Noe, Apr 27 2011

Keywords

Comments

a(32) <= 9519378185. - Donovan Johnson, Apr 30 2011
From Antti Karttunen, Oct 02 2019: (Start)
For at least n = 1, 3, 4, 5, 6, 7, 10, 14, 15, 17, 21, 23, 24, 25, 26, 27, 28, 29, we have = a(n) = A003415(a(1+n)), thus we have subsequences like 6, 9, 14, 33, 62, 177 that are obtained by iterating A098699 starting from 6, but as A098699(177) = 0, that run ends there. From a(14) to a(16) we have a run of three such terms: 6849, 9770, 17675. A yet longer such run is from a(23) to a(30): 2029875, 4059746, 7037655, 17594075, 50850483, 68589598, 186888243, 373659254.
Applying A327968 to these terms yields: 0, 0, 1, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, ...
Question: Are there indefinitely long sequences of iterations of A003415 that end with steps ... -> p -> 1 -> 0, with p=5? Are there such sequences for any other prime p? Can we construct a such sequence that is guaranteed to be infinite? See the subtree depicted in A327975 and conjecture #8 in Ufnarovski and Ahlander paper.
(End)

Crossrefs

Cf. A256750, A327966 (left inverses for this sequence).
Subsequence of A048103. Differs from A327967 for the first time at n=19.

Programs

  • Mathematica
    nn = 15; t = Table[0, {nn}]; n = 0; cnt = 0; While[cnt < nn, n++; k = 0; d = n; While[f = Transpose[FactorInteger[d]]; d > 1 && And @@ MapThread[Greater, f], k++; d = Plus @@ (d*f[[2]]/f[[1]])]; If[d == 1, k++; If[k <= nn && t[[k]] == 0, t[[k]] = n; cnt++]]]; Join[{0},t]

Formula

Least k such that A099307(k) = n.
For all n >= 0, A256750(a(n)) = A327966(a(n)) = n, A327965(a(n)) = A003415(a(n)). - Antti Karttunen, Oct 02 2019

Extensions

a(26)-a(31) from Donovan Johnson, Apr 29 2011