A189831 Labeled simple graphs with n nodes and n-1 edges that are not trees.
0, 0, 0, 4, 85, 1707, 37457, 921896, 25477371, 786163135, 26890701739, 1012165431744, 41638805754078, 1860589088529164, 89802422444553825, 4658465562594667088, 258566755450911870007, 15294477441385413149679, 960641026388207044487891, 63861339527473864490450300
Offset: 1
Keywords
Examples
a(4) = 4 because there are 20 labeled simple graphs on four nodes with three edges but 16 of these are connected i.e. they are trees.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..370
Programs
-
Magma
[Binomial(Binomial(n,2),n-1) - n^(n-2): n in [1..20]]; // G. C. Greubel, Jan 14 2018
-
Mathematica
Table[Binomial[Binomial[n,2],n-1]-n^(n-2),{n,1,20}]
-
PARI
for(n=1,20, print1(binomial(binomial(n,2),n-1) - n^(n-2), ", ")) \\ G. C. Greubel, Jan 14 2018
Comments