A189913 Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).
1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42
Offset: 0
Examples
[0] 1 [1] 1, 1 [2] 1, 2, 1 [3] 1, 3, 3, 3 [4] 1, 4, 6, 12, 2 [5] 1, 5, 10, 30, 10, 10 [6] 1, 6, 15, 60, 30, 60, 5 [7] 1, 7, 21, 105, 70, 210, 35, 35
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Peter Luschny, The lost Catalan numbers.
Programs
-
Magma
/* As triangle */ [[Binomial(n,k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018
-
Maple
A189913 := (n,k) -> binomial(n,k)*(k!/iquo(k,2)!^2)/(iquo(k,2)+1): seq(print(seq(A189913(n,k),k=0..n)),n=0..7);
-
Mathematica
T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)
-
PARI
{T(n,k) = binomial(n,k)*k!/((floor(k/2))!*(floor((k+2)/2))!) }; for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 13 2018
Formula
From R. J. Mathar, Jun 07 2011: (Start)
T(n,1) = n.
T(n,2) = A000217(n-1).
T(n,3) = A027480(n-2).
T(n,4) = A034827(n). (End)
Comments