A189959 Decimal expansion of (4+5*sqrt(2))/4.
2, 7, 6, 7, 7, 6, 6, 9, 5, 2, 9, 6, 6, 3, 6, 8, 8, 1, 1, 0, 0, 2, 1, 1, 0, 9, 0, 5, 2, 6, 2, 1, 2, 2, 5, 9, 8, 2, 1, 2, 0, 8, 9, 8, 4, 4, 2, 2, 1, 1, 8, 5, 0, 9, 1, 4, 7, 0, 8, 4, 9, 6, 7, 2, 4, 8, 8, 4, 1, 5, 5, 9, 8, 0, 7, 7, 6, 3, 3, 7, 9, 8, 5, 6, 2, 9, 8, 4, 4, 1, 7, 9, 0, 9, 5, 5, 1, 9, 6, 5, 9, 1, 8, 7, 6, 7, 3, 0, 7, 7, 8, 8, 6, 4, 0, 3, 7, 1, 2, 8, 1, 1, 5, 6, 0, 4, 5, 0, 6, 9
Offset: 1
Examples
2.767766952966368811002110905262122598212089844221...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A188635.
Programs
-
Magma
(4+5*Sqrt(2))/4 // G. C. Greubel, Jan 13 2018
-
Mathematica
r=1+2^(1/2); FromContinuedFraction[{r,r,r}] FullSimplify[%] N[%,130] RealDigits[%] ContinuedFraction[%%] RealDigits[(4+5Sqrt[2])/4,10,150][[1]] (* Harvey P. Dale, Dec 17 2024 *)
-
PARI
(4+5*sqrt(2))/4 \\ G. C. Greubel, Jan 13 2018
Formula
Continued fraction (as explained at A188635): [r,r,r], where r = 1 + sqrt(2). The ordinary continued fraction (as given by Mathematica program shown below) is as follows:
[2,1,3,3,3,1,2,1,3,3,3,1,2,1,3,3,3,1,2,1,3,3,3,1,2...]
Comments