A189974 Numbers m such that d(m-1) = d(m+1) = 4, where d(k) is the number of divisors of k (A000005).
7, 9, 34, 56, 86, 92, 94, 124, 142, 144, 160, 184, 186, 202, 204, 214, 216, 218, 220, 236, 248, 266, 300, 302, 304, 320, 322, 328, 340, 342, 392, 394, 412, 414, 416, 446, 452, 470, 472, 516, 518, 534, 536, 544, 552, 580, 582, 590, 634, 668, 670, 680, 686
Offset: 1
Keywords
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A189974 := proc(n) option remember: local k: if(n=1)then return 7:else k:=procname(n-1)+1: do if(tau(k-1)=4 and tau(k+1)=4)then return k: fi: k:=k+1: od: fi: end: seq(A189974(n),n=1..60); # Nathaniel Johnston, May 04 2011
-
Mathematica
Select[Range[2, 754], DivisorSigma[0, # - 1] == DivisorSigma[0, # + 1] == 4 &] Flatten[Position[Partition[DivisorSigma[0,Range[700]],3,1],?(#[[1]]==#[[3]]==4&),1,Heads->False]]+1 (* _Harvey P. Dale, Jul 21 2025 *)
Comments