A189975 Numbers with prime factorization pqr^3 for distinct p, q, r.
120, 168, 264, 270, 280, 312, 378, 408, 440, 456, 520, 552, 594, 616, 680, 696, 702, 728, 744, 750, 760, 888, 918, 920, 945, 952, 984, 1026, 1032, 1064, 1128, 1144, 1160, 1240, 1242, 1272, 1288, 1416, 1464, 1480, 1485, 1496, 1566, 1608, 1624, 1640, 1672
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, List of prime signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3}; Select[Range[2000],f]
-
PARI
list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/3),forprime(q=2,sqrt(lim\p^3),if(p==q,next);t=p^3*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A189975(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**3)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))-primepi(integer_nthroot(x,5)[0]) return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025