A189980 a(n) is the number of incongruent two-color bracelets of n beads, 10 from them are black (A005515), having a diameter of symmetry.
1, 1, 6, 6, 21, 21, 56, 56, 126, 126, 252, 252, 462, 462, 792, 792, 1287, 1287, 2002, 2002, 3003, 3003, 4368, 4368, 6188, 6188, 8568, 8568, 11628, 11628, 15504, 15504, 20349, 20349, 26334, 26334, 33649, 33649
Offset: 10
Links
- Hansraj Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 964-999.
- V. Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], 2007-2011.
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
Programs
-
Maple
A189980 :=proc(n): binomial(floor(n/2),5) end: seq(A189980(n), n=10..47); # Johannes W. Meijer, Aug 15 2011
-
Mathematica
Table[Binomial[Floor[n/2],5],{n,10,50}] (* Harvey P. Dale, Oct 06 2017 *)
Formula
a(n) = binomial(floor(n/2), 5). [Typo fixed by Colin Barker, Feb 07 2013]
a(n+6) = A194005(n, n-5). - Johannes W. Meijer, Aug 15 2011
G.f.: x^10/((x-1)^6*(x+1)^5). - Colin Barker, Feb 07 2013
Extensions
Data added and link corrected by Johannes W. Meijer, Aug 15 2011
Comments