A190005 a(n) = 6*a(n-1) + 10*a(n-2), with a(0)=0, a(1)=1.
0, 1, 6, 46, 336, 2476, 18216, 134056, 986496, 7259536, 53422176, 393128416, 2892992256, 21289237696, 156665348736, 1152884469376, 8483960303616, 62432606515456, 459435242128896, 3380937517927936, 24879977528856576, 183089240352418816, 1347335217403078656
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,10).
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
-
Mathematica
LinearRecurrence[{6,10}, {0,1}, 50] CoefficientList[Series[x/(1-6*x-10*x^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 11 2018 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-6*x-10*x^2))) \\ G. C. Greubel, Jan 11 2018
Formula
G.f.: x/(1 - 6*x - 10*x^2). - R. J. Mathar, Nov 20 2011