cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190048 Expansion of (8+6*x)/(1-x)^5.

Original entry on oeis.org

8, 46, 150, 370, 770, 1428, 2436, 3900, 5940, 8690, 12298, 16926, 22750, 29960, 38760, 49368, 62016, 76950, 94430, 114730, 138138, 164956, 195500, 230100, 269100, 312858, 361746, 416150, 476470, 543120, 616528, 697136, 785400, 881790, 986790, 1100898
Offset: 0

Views

Author

Johannes W. Meijer, May 06 2011

Keywords

Comments

Equals the fifth right hand column of A175136.

Crossrefs

Related to A000332 and A091894.

Programs

  • Magma
    [(7*n^4+58*n^3+173*n^2+218*n+96)/12: n in [0..50]]; // Vincenzo Librandi, May 07 2011
    
  • Maple
    A190048 := proc(n) option remember; a(n):=(7*n^4+58*n^3+173*n^2+218*n+96)/12 end: seq(A190048(n),n=0..35);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1}, {8,46,150,370,770}, 30] (* or *) CoefficientList[Series[(8+6*x)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
  • PARI
    x='x+O('x^30); Vec((8+6*x)/(1-x)^5) \\ G. C. Greubel, Jan 10 2018
    
  • PARI
    for(n=0,50, print1((7*n^4 +58*n^3 +173*n^2 +218*n +96)/12, ", ")) \\ G. C. Greubel, Jan 10 2018

Formula

G.f.: (8+6*x)/(1-x)^5.
a(n) = 8*binomial(n+4,4) + 6*binomial(n+3,4).
a(n) = A091894(4,0)*binomial(n+4,4) + A091894(4,1)*binomial(n+3,4).
a(n) = (7*n^4 +58*n^3 +173*n^2 +218*n +96)/12.