cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190062 a(n) = n*Fibonacci(n) - Sum_{i=0..n-1} Fibonacci(i).

Original entry on oeis.org

0, 1, 1, 4, 8, 18, 36, 71, 135, 252, 462, 836, 1496, 2653, 4669, 8164, 14196, 24566, 42332, 72675, 124355, 212156, 360986, 612744, 1037808, 1754233, 2959801, 4985476, 8384480, 14080602, 23614932, 39556031, 66181311, 110608188, 184670694
Offset: 0

Views

Author

Bruno Berselli, May 04 2011

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*Fibonacci(n)-(&+[Fibonacci(k): k in [0..n-1]]): n in [1..34]];
    
  • Mathematica
    CoefficientList[Series[x (1 - 2 x + 2 x^2) / ((1 - x) (1 - x - x^2)^2), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    concat(0, Vec(x*(1-2*x+2*x^2)/((1-x)*(1-x-x^2)^2) + O(x^50))) \\ Altug Alkan, Nov 13 2015

Formula

G.f.: x*(1-2*x+2*x^2)/((1-x)*(1-x-x^2)^2).
a(n) = A045925(n) - A000071(n+1).
a(n) = (n-1)*Fibonacci(n) - Fibonacci(n-1) + 1.
a(n) = (((2*n-1)*r-5)*(1+r)^n-((2*n-1)*r+5)*(1-r)^n)/(10*2^n)+1, where r=sqrt(5).