cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190101 Number of transpose partition pairs of order n whose number of odd parts differ by numbers of the form 4*k + 2.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 5, 5, 1, 5, 18, 18, 6, 18, 55, 55, 23, 56, 150, 150, 73, 155, 376, 377, 205, 394, 885, 890, 526, 940, 1979, 1996, 1261, 2128, 4240, 4290, 2863, 4611, 8764, 8895, 6213, 9630, 17561, 17877, 12980, 19479, 34243, 34961, 26246, 38310, 65187
Offset: 0

Views

Author

Michael Somos, May 04 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted u(n)/2 by Lossers. t(n) is A097566(n). Stanley's f(n) is A085261(n). Partitions p(n) is A000041(n).
As noted in the solution the number of odd parts of a partition and its conjugate are of the same parity as n. Hence the difference in the number of odd parts must be even and if it is not divisible by 4 then it is of the form 4*k + 2 and the partition is not self conjugate.

Examples

			G.f. = x^2 + x^3 + x^5 + 5*x^6 + 5*x^7 + x^8 + 5*x^9 + 18*x^10 + 18*x^11 + ...
G.f. = q^47 + q^71 + q^119 + 5*q^143 + 5*q^167 + q^191 + 5*q^215 + ...
a(6) = 5 because ([6], [1,1,1,1,1,1]), ([5,1], [2,1,1,1,1]), ([4,2], [2,2,1,1]), ([4,1,1], [3,1,1,1]), ([3,3], [2,2,2]) are the 5 pairs of partitions of 6 where each partition and its transpose number of odd parts differ by 6, 2, 2, 2, 2 which are of the form 4*k + 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[EllipticTheta[2, 0, q^8]/( 2*QPochhammer[q] * EllipticTheta[3, 0, q^2]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 18 2017 *)
    nmax = 100; CoefficientList[Series[x^2 * Product[(1 + x^(4*k))^3 * (1 + x^(8*k)) * (1 + x^(16*k))^2 / ((1 + x^(2*k))^2 * (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    {a(n) = local(A); if( n<2, 0, n = n-2; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^8 + A) * eta(x^32 + A))^2 / (eta(x + A) * eta(x^4 + A)^5 * eta(x^16 + A)), n))};

Formula

Expansion of x^2 * psi(x^16) / (f(-x) * phi(x^2)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(1/24) * (eta(q^2) * eta(q^8) * eta(q^32))^2 / (eta(q) * eta(q^4)^5 * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ 1, -1, 1, 4, 1, -1, 1, 2, 1, -1, 1, 4, 1, -1, 1, 3, 1, -1, 1, 4, 1, -1, 1, 2, 1, -1, 1, 4, 1, -1, 1, 1, ...].
p(n) = t(n) + u(n). f(n) = t(n) - u(n). u(n) = 2*a(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*n*sqrt(3)). - Vaclav Kotesovec, Jul 05 2025