A190106 Numbers with prime factorization p^2*q^3*r^3 where p, q, and r are distinct primes.
5400, 9000, 10584, 13500, 24696, 26136, 36504, 37044, 49000, 62424, 68600, 77976, 95832, 114264, 121000, 143748, 158184, 165375, 169000, 171500, 181656, 207576, 231525, 237276, 266200, 289000, 295704, 332024, 353736, 361000, 363096
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, List of prime signatures, 2010.
- Index to sequences related to prime signature.
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={2,3,3};Select[Range[500000],f]
-
PARI
list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\4)^(1/6), t1=p^3;forprime(q=p+1, (lim\t1)^(1/3), t2=t1*q^3;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, primerange def A190106(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=integer_nthroot(x//r**2,3)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))-primepi(integer_nthroot(x,8)[0]) return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025
Formula
Sum_{n>=1} 1/a(n) = P(2)*P(3)^2/2 - P(2)*P(6)/2 - P(3)*P(5) + P(8) = 0.00085907862422456410530..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024