cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190106 Numbers with prime factorization p^2*q^3*r^3 where p, q, and r are distinct primes.

Original entry on oeis.org

5400, 9000, 10584, 13500, 24696, 26136, 36504, 37044, 49000, 62424, 68600, 77976, 95832, 114264, 121000, 143748, 158184, 165375, 169000, 171500, 181656, 207576, 231525, 237276, 266200, 289000, 295704, 332024, 353736, 361000, 363096
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,3,3};Select[Range[500000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\4)^(1/6), t1=p^3;forprime(q=p+1, (lim\t1)^(1/3), t2=t1*q^3;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A190106(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=integer_nthroot(x//r**2,3)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))-primepi(integer_nthroot(x,8)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3)^2/2 - P(2)*P(6)/2 - P(3)*P(5) + P(8) = 0.00085907862422456410530..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024