cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A190108 Numbers with prime factorization p*q*r^3*s^3 (where p, q, r, s are distinct primes).

Original entry on oeis.org

7560, 11880, 14040, 16632, 18360, 19656, 20520, 21000, 24840, 25704, 28728, 30888, 31320, 33000, 33480, 34776, 39000, 39960, 40392, 41160, 43848, 44280, 45144, 46440, 46872, 47250, 47736, 50760, 51000, 53352, 54648, 55944, 57000, 57240, 61992, 63720, 64584
Offset: 1

Views

Author

Keywords

Comments

A050326(a(n)) = 11. - Reinhard Zumkeller, May 03 2013

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^3)*(3^3)*5*7 = 7560;
a(2) = (2^3)*(3^3)*5*11 = 11880;
a(3) = (2^3)*(3^3)*5*13 = 14040;
a(4) = (2^3)*(3^3)*7*11 = 16632.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3,3};Select[Range[150000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\120, 3), t1=p^3; forprime(q=2,sqrtnint(lim\(6*t1), 3), if(q==p, next); t2=q^3*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Extensions

Name edited by Petros Hadjicostas, Oct 26 2019

A190109 Numbers with prime factorization p*q^2*r^2*s^3 (where p, q, r, s are distinct primes).

Original entry on oeis.org

12600, 17640, 18900, 19800, 23400, 26460, 29400, 29700, 30600, 31500, 34200, 35100, 38808, 41400, 43560, 45864, 45900, 49500, 51300, 52200, 55800, 58212, 58500, 59976, 60840, 60984, 61740, 62100, 65340, 66150, 66600, 67032, 68796, 72600, 73500, 73800, 76500
Offset: 1

Views

Author

Keywords

Comments

That is, numbers with prime signature {1,2,2,3}.

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^3)*(3^2)*(5^2)*7 = 12600;
a(2) = (2^3)*(3^2)*5*(7^2) = 17640;
a(3) = (2^2)*(3^3)*(5^2)*7 = 18900;
a(4) = (2^3)*(3^2)*(5^2)*11 = 19800.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,2,3};Select[Range[150000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\180, 3), t1=p^3; forprime(q=2,sqrtint(lim\(12*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(2*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

A190107 Numbers with prime factorization pqr^2s^4.

Original entry on oeis.org

5040, 7920, 8400, 9360, 11088, 11340, 11760, 12240, 13104, 13200, 13680, 15600, 16560, 17136, 17820, 19152, 20400, 20592, 20880, 21060, 22320, 22800, 23184, 24948, 25872, 26640, 26928, 27540, 27600, 28350, 29040, 29232, 29484, 29520
Offset: 1

Views

Author

Keywords

Comments

A050326(a(n)) = 3. - Reinhard Zumkeller, May 03 2013

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2,4};Select[Range[60000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\60, 4), t1=p^4; forprime(q=2,sqrtint(lim\(6*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

A381314 Powerful numbers that have a single exponent in their prime factorization that equals 2.

Original entry on oeis.org

4, 9, 25, 49, 72, 108, 121, 144, 169, 200, 288, 289, 324, 361, 392, 400, 500, 529, 576, 675, 784, 800, 841, 961, 968, 972, 1125, 1152, 1323, 1352, 1369, 1372, 1568, 1600, 1681, 1849, 1936, 2025, 2209, 2304, 2312, 2500, 2704, 2809, 2888, 2916, 3087, 3136, 3200
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Number of the form A036966(m)/p, m >= 2, where p is a prime divisor of A036966(m).

Crossrefs

Programs

  • Mathematica
    With[{max = 3200}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], Count[FactorInteger[#][[;; , 2]], 2] == 1 &]]
  • PARI
    isok(k) = if(k == 1, 0, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> (x==2), e) == 1);

Formula

Sum_{n>=1} 1/a(n) = Sum_{p prime}((p-1)/(p^3-p^2+1)) * Product_{p prime} (1 + 1/(p^2*(p-1))) = 0.53045141423939736076... .
Showing 1-4 of 4 results.