cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050326 Number of factorizations of n into distinct squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2, 0, 1, 4, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).
a(A212164(n)) = 0; a(A212166(n)) = 1; a(A006881(n)) = 2; a(A190107(n)) = 3; a(A085987(n)) = 4; a(A225228(n)) = 5; a(A179670(n)) = 7; a(A162143(n)) = 8; a(A190108(n)) = 11; a(A212167(n)) > 0; a(A212168(n)) > 1. - Reinhard Zumkeller, May 03 2013
The comment that a(A212164(n)) = 0 is incorrect. For example, 3600 belongs to A212164 but a(3600) = 1. The positions of zeros in this sequence are A293243. - Gus Wiseman, Oct 10 2017

Examples

			The a(30) = 5 factorizations are: 2*3*5, 2*15, 3*10, 5*6, 30. The a(180) = 5 factorizations are: 2*3*5*6, 2*3*30, 2*6*15, 3*6*10, 6*30. - _Gus Wiseman_, Oct 10 2017
		

Crossrefs

Cf. A001055, A005117, A045778, A046523, A050320, A050327, a(p^k)=0 (p>1), a(A002110)=A000110, a(n!)=A103775(n), A206778, A293243.

Programs

  • Haskell
    import Data.List (subsequences, genericIndex)
    a050326 n = genericIndex a050326_list (n-1)
    a050326_list = 1 : f 2 where
       f x = (if x /= s then a050326 s
                        else length $ filter (== x) $ map product $
                             subsequences $ tail $ a206778_row x) : f (x + 1)
             where s = a046523 x
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    N:= 1000: # to get a(1)..a(N)
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
         S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    convert(A,list); # Robert Israel, Oct 10 2017
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[n]],{n,100}] (* Gus Wiseman, Oct 10 2017 *)

Formula

Dirichlet g.f.: prod{n is squarefree and > 1}(1+1/n^s).
a(n) = A050327(A101296(n)). - R. J. Mathar, May 26 2017

A238748 Numbers k such that each integer that appears in the prime signature of k appears an even number of times.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1

Views

Author

Matthew Vandermast, May 08 2014

Keywords

Comments

Values of n for which all numbers in row A238747(n) are even. Also, numbers n such that A000005(n^m) is a perfect square for all nonnegative integers m; numbers n such that A181819(n) is a perfect square; numbers n such that A182860(n) is odd.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 3, 33, 314, 3119, 31436, 315888, 3162042, 31626518, 316284320, 3162915907, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3162... . - Amiram Eldar, Nov 28 2023

Examples

			The prime signature of 36 = 2^2 * 3^2 is {2,2}. One distinct integer (namely, 2) appears in the prime signature, and it appears an even number of times (2 times). Hence, 36 appears in the sequence.
The prime factorization of 1260 = 2^2 * 3^2 * 5^1 * 7^1. Exponent 2 occurs twice (an even number of times), as well as exponent 1, thus 1260 is included. It is also the first term k > 1 in this sequence for which A182850(k) = 4, not 3. - _Antti Karttunen_, Feb 06 2016
		

Crossrefs

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[Tally[FactorInteger[n][[;; , 2]]][[;; , 2]], EvenQ]; Select[Range[200], q] (* Amiram Eldar, Nov 28 2023 *)
  • PARI
    is(n) = {my(e = factor(n)[, 2], m = #e); if(m%2, return(0)); e = vecsort(e); forstep(i = 1, m, 2, if(e[i] != e[i+1], return(0))); 1;} \\ Amiram Eldar, Nov 28 2023
  • Scheme
    (define A238748 (MATCHING-POS 1 1 (lambda (n) (square? (A181819 n)))))
    (define (square? n) (not (zero? (A010052 n))))
    ;; Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 06 2016
    

A190110 Numbers with prime factorization p*q*r*s*t^4 (where p, q, r, s, t are distinct primes).

Original entry on oeis.org

18480, 21840, 28560, 31920, 34320, 38640, 44880, 48048, 48720, 50160, 52080, 53040, 59280, 60720, 62160, 62370, 62832, 68880, 70224, 71760, 72240, 73710, 74256, 76560, 77520, 78960, 80080, 81840, 82992, 85008, 89040, 90480, 93840, 96390, 96720, 97680, 99120
Offset: 1

Views

Author

Keywords

Comments

That is, numbers with prime signature {1,1,1,1,4}.

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^4)*3*5*7*11 = 18480;
a(2) = (2^4)*3*5*7*13 = 21840;
a(3) = (2^4)*3*5*7*17 = 28560;
a(4) = (2^4)*3*5*7*19 = 31920.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,1,4};Select[Range[150000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p1=2,sqrtnint(lim\210, 4), t1=p1^4; forprime(p2=2,lim\(30*t1), if(p2==p1, next); t2=p2*t1; forprime(p3=2,lim\(6*t2), if(p3==p1 || p3==p2, next); t3=p3*t2; forprime(p4=2,lim\(2*t3), if(p4==p1 || p4==p2 || p4==p3, next); t4=p4*t3; forprime(p5=2,lim\t4, if(p5==p1 || p5==p2 || p5==p3 || p5==p4, next); listput(v, t4*p5)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Extensions

Name edited by Petros Hadjicostas, Oct 26 2019

A190109 Numbers with prime factorization p*q^2*r^2*s^3 (where p, q, r, s are distinct primes).

Original entry on oeis.org

12600, 17640, 18900, 19800, 23400, 26460, 29400, 29700, 30600, 31500, 34200, 35100, 38808, 41400, 43560, 45864, 45900, 49500, 51300, 52200, 55800, 58212, 58500, 59976, 60840, 60984, 61740, 62100, 65340, 66150, 66600, 67032, 68796, 72600, 73500, 73800, 76500
Offset: 1

Views

Author

Keywords

Comments

That is, numbers with prime signature {1,2,2,3}.

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^3)*(3^2)*(5^2)*7 = 12600;
a(2) = (2^3)*(3^2)*5*(7^2) = 17640;
a(3) = (2^2)*(3^3)*(5^2)*7 = 18900;
a(4) = (2^3)*(3^2)*(5^2)*11 = 19800.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,2,3};Select[Range[150000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\180, 3), t1=p^3; forprime(q=2,sqrtint(lim\(12*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(2*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

A190377 Numbers with prime factorization p^2*q^2*r^2*s^2 where p, q, r, and s are distinct primes.

Original entry on oeis.org

44100, 108900, 152100, 213444, 260100, 298116, 324900, 476100, 509796, 592900, 636804, 736164, 756900, 828100, 864900, 933156, 1232100, 1258884, 1334025, 1416100, 1483524, 1512900, 1572516, 1664100, 1695204, 1758276, 1768900, 1863225
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,2,2};Select[Range[3000000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtint(lim\900), t1=p^2; forprime(q=2,sqrtint(lim\(36*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(4*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,sqrtint(lim\t3), if(s==p || s==q || s==r, next); listput(v, t3*s^2))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A190377(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1),1) for b,m in enumerate(primerange(k+1,integer_nthroot(x//k,3)[0]+1),a+1) for c,r in enumerate(primerange(m+1,isqrt(x//(k*m))+1),b+1)))
        return bisection(f,n,n)**2 # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = (P(2)^4 - 6*P(2)^2*P(4) + 8*P(2)*P(6) + 3*P(4)^2 - 6*P(8))/24 = 0.00010511750849230980748..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
a(n) = A046386(n)^2. - Chai Wah Wu, Mar 27 2025
Showing 1-5 of 5 results.