cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050326 Number of factorizations of n into distinct squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2, 0, 1, 4, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).
a(A212164(n)) = 0; a(A212166(n)) = 1; a(A006881(n)) = 2; a(A190107(n)) = 3; a(A085987(n)) = 4; a(A225228(n)) = 5; a(A179670(n)) = 7; a(A162143(n)) = 8; a(A190108(n)) = 11; a(A212167(n)) > 0; a(A212168(n)) > 1. - Reinhard Zumkeller, May 03 2013
The comment that a(A212164(n)) = 0 is incorrect. For example, 3600 belongs to A212164 but a(3600) = 1. The positions of zeros in this sequence are A293243. - Gus Wiseman, Oct 10 2017

Examples

			The a(30) = 5 factorizations are: 2*3*5, 2*15, 3*10, 5*6, 30. The a(180) = 5 factorizations are: 2*3*5*6, 2*3*30, 2*6*15, 3*6*10, 6*30. - _Gus Wiseman_, Oct 10 2017
		

Crossrefs

Cf. A001055, A005117, A045778, A046523, A050320, A050327, a(p^k)=0 (p>1), a(A002110)=A000110, a(n!)=A103775(n), A206778, A293243.

Programs

  • Haskell
    import Data.List (subsequences, genericIndex)
    a050326 n = genericIndex a050326_list (n-1)
    a050326_list = 1 : f 2 where
       f x = (if x /= s then a050326 s
                        else length $ filter (== x) $ map product $
                             subsequences $ tail $ a206778_row x) : f (x + 1)
             where s = a046523 x
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    N:= 1000: # to get a(1)..a(N)
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
         S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    convert(A,list); # Robert Israel, Oct 10 2017
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[n]],{n,100}] (* Gus Wiseman, Oct 10 2017 *)

Formula

Dirichlet g.f.: prod{n is squarefree and > 1}(1+1/n^s).
a(n) = A050327(A101296(n)). - R. J. Mathar, May 26 2017

A190110 Numbers with prime factorization p*q*r*s*t^4 (where p, q, r, s, t are distinct primes).

Original entry on oeis.org

18480, 21840, 28560, 31920, 34320, 38640, 44880, 48048, 48720, 50160, 52080, 53040, 59280, 60720, 62160, 62370, 62832, 68880, 70224, 71760, 72240, 73710, 74256, 76560, 77520, 78960, 80080, 81840, 82992, 85008, 89040, 90480, 93840, 96390, 96720, 97680, 99120
Offset: 1

Views

Author

Keywords

Comments

That is, numbers with prime signature {1,1,1,1,4}.

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^4)*3*5*7*11 = 18480;
a(2) = (2^4)*3*5*7*13 = 21840;
a(3) = (2^4)*3*5*7*17 = 28560;
a(4) = (2^4)*3*5*7*19 = 31920.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,1,4};Select[Range[150000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p1=2,sqrtnint(lim\210, 4), t1=p1^4; forprime(p2=2,lim\(30*t1), if(p2==p1, next); t2=p2*t1; forprime(p3=2,lim\(6*t2), if(p3==p1 || p3==p2, next); t3=p3*t2; forprime(p4=2,lim\(2*t3), if(p4==p1 || p4==p2 || p4==p3, next); t4=p4*t3; forprime(p5=2,lim\t4, if(p5==p1 || p5==p2 || p5==p3 || p5==p4, next); listput(v, t4*p5)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Extensions

Name edited by Petros Hadjicostas, Oct 26 2019

A190108 Numbers with prime factorization p*q*r^3*s^3 (where p, q, r, s are distinct primes).

Original entry on oeis.org

7560, 11880, 14040, 16632, 18360, 19656, 20520, 21000, 24840, 25704, 28728, 30888, 31320, 33000, 33480, 34776, 39000, 39960, 40392, 41160, 43848, 44280, 45144, 46440, 46872, 47250, 47736, 50760, 51000, 53352, 54648, 55944, 57000, 57240, 61992, 63720, 64584
Offset: 1

Views

Author

Keywords

Comments

A050326(a(n)) = 11. - Reinhard Zumkeller, May 03 2013

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^3)*(3^3)*5*7 = 7560;
a(2) = (2^3)*(3^3)*5*11 = 11880;
a(3) = (2^3)*(3^3)*5*13 = 14040;
a(4) = (2^3)*(3^3)*7*11 = 16632.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3,3};Select[Range[150000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\120, 3), t1=p^3; forprime(q=2,sqrtnint(lim\(6*t1), 3), if(q==p, next); t2=q^3*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Extensions

Name edited by Petros Hadjicostas, Oct 26 2019

A190109 Numbers with prime factorization p*q^2*r^2*s^3 (where p, q, r, s are distinct primes).

Original entry on oeis.org

12600, 17640, 18900, 19800, 23400, 26460, 29400, 29700, 30600, 31500, 34200, 35100, 38808, 41400, 43560, 45864, 45900, 49500, 51300, 52200, 55800, 58212, 58500, 59976, 60840, 60984, 61740, 62100, 65340, 66150, 66600, 67032, 68796, 72600, 73500, 73800, 76500
Offset: 1

Views

Author

Keywords

Comments

That is, numbers with prime signature {1,2,2,3}.

Examples

			From _Petros Hadjicostas_, Oct 26 2019: (Start)
a(1) = (2^3)*(3^2)*(5^2)*7 = 12600;
a(2) = (2^3)*(3^2)*5*(7^2) = 17640;
a(3) = (2^2)*(3^3)*(5^2)*7 = 18900;
a(4) = (2^3)*(3^2)*(5^2)*11 = 19800.
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,2,3};Select[Range[150000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\180, 3), t1=p^3; forprime(q=2,sqrtint(lim\(12*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(2*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
Showing 1-4 of 4 results.