A190110 Numbers with prime factorization p*q*r*s*t^4 (where p, q, r, s, t are distinct primes).
18480, 21840, 28560, 31920, 34320, 38640, 44880, 48048, 48720, 50160, 52080, 53040, 59280, 60720, 62160, 62370, 62832, 68880, 70224, 71760, 72240, 73710, 74256, 76560, 77520, 78960, 80080, 81840, 82992, 85008, 89040, 90480, 93840, 96390, 96720, 97680, 99120
Offset: 1
Keywords
Examples
From _Petros Hadjicostas_, Oct 26 2019: (Start) a(1) = (2^4)*3*5*7*11 = 18480; a(2) = (2^4)*3*5*7*13 = 21840; a(3) = (2^4)*3*5*7*17 = 28560; a(4) = (2^4)*3*5*7*19 = 31920. (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime signature.
- Wikipedia, Prime signature.
- Will Nicholes, Prime Signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,1,4};Select[Range[150000],f]
-
PARI
list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p1=2,sqrtnint(lim\210, 4), t1=p1^4; forprime(p2=2,lim\(30*t1), if(p2==p1, next); t2=p2*t1; forprime(p3=2,lim\(6*t2), if(p3==p1 || p3==p2, next); t3=p3*t2; forprime(p4=2,lim\(2*t3), if(p4==p1 || p4==p2 || p4==p3, next); t4=p4*t3; forprime(p5=2,lim\t4, if(p5==p1 || p5==p2 || p5==p3 || p5==p4, next); listput(v, t4*p5)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
Extensions
Name edited by Petros Hadjicostas, Oct 26 2019
Comments