cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190114 Numbers with prime factorization p^2*q^2*r^5 where p, q, and r are distinct primes.

Original entry on oeis.org

7200, 14112, 24300, 34848, 39200, 47628, 48672, 83232, 96800, 103968, 112500, 117612, 135200, 152352, 164268, 189728, 231200, 242208, 264992, 276768, 280908, 288800, 297675, 350892, 394272, 423200, 453152, 484128, 514188, 532512, 566048
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,5};Select[Range[900000],f]
    With[{upto=600000},Select[#[[1]]^2 #[[2]]^2 #[[3]]^5&/@ Flatten[ Permutations/@ Subsets[Prime[Range[Ceiling[Surd[upto,5]+1]]],{3}],1]// Union,#<=upto&]] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/5), t1=p^5;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

Formula

Sum_{n>=1} 1/a(n) = P(2)^2*P(5)/2 - P(2)*P(8)/2 - P(4)*P(5)/2 - P(2)*P(7) + P(9) = 0.00053812627050585644544..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024