A190117 a(n) = Sum_{k=1..n} k*k', where n' is the arithmetic derivative of n.
0, 2, 5, 21, 26, 56, 63, 159, 213, 283, 294, 486, 499, 625, 745, 1257, 1274, 1652, 1671, 2151, 2361, 2647, 2670, 3726, 3976, 4366, 5095, 5991, 6020, 6950, 6981, 9541, 10003, 10649, 11069, 13229, 13266, 14064, 14688, 17408, 17449, 19171, 19214, 21326, 23081, 24231, 24278, 29654, 30340, 32590
Offset: 1
Keywords
Examples
1*1' + 2*2' + 3*3' = 0 + 2 + 3 = 5 -> a(3) = 5.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]): seq(add(der(i)*i,i=1..n),n=1..50);
-
Mathematica
A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[k*A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
Formula
a(n) ~ c * n^3 / 3, where c = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Jun 22 2025