cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190117 a(n) = Sum_{k=1..n} k*k', where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 2, 5, 21, 26, 56, 63, 159, 213, 283, 294, 486, 499, 625, 745, 1257, 1274, 1652, 1671, 2151, 2361, 2647, 2670, 3726, 3976, 4366, 5095, 5991, 6020, 6950, 6981, 9541, 10003, 10649, 11069, 13229, 13266, 14064, 14688, 17408, 17449, 19171, 19214, 21326, 23081, 24231, 24278, 29654, 30340, 32590
Offset: 1

Views

Author

Giorgio Balzarotti, May 04 2011

Keywords

Examples

			1*1' + 2*2' + 3*3' = 0 + 2 + 3 = 5 -> a(3) = 5.
		

Crossrefs

Partial sums of A190116.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(der(i)*i,i=1..n),n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]];
    Table[Sum[k*A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)

Formula

a(n) ~ c * n^3 / 3, where c = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Jun 22 2025