cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190121 Partial sums of the arithmetic derivative function A003415.

Original entry on oeis.org

0, 1, 2, 6, 7, 12, 13, 25, 31, 38, 39, 55, 56, 65, 73, 105, 106, 127, 128, 152, 162, 175, 176, 220, 230, 245, 272, 304, 305, 336, 337, 417, 431, 450, 462, 522, 523, 544, 560, 628, 629, 670, 671, 719, 758, 783, 784, 896, 910, 955, 975, 1031, 1032, 1113, 1129
Offset: 1

Views

Author

Giorgio Balzarotti, May 04 2011

Keywords

Comments

See A229523 for a(10^n). - M. F. Hasler, Sep 25 2013

Examples

			1'+2'+3'+4'+5' = 0+1+1+4+1 = 7 -> a(5) = 7.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(der(i),i=1..j),j=1..100);
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Table[d[n], {n, 1, 55}] // Accumulate (* Jean-François Alcover, Feb 21 2014 *)
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    s=0; A190121=vector(199,n,s+=A003415(n))
    
  • PARI
    A190121(n)=sum(k=1,n,A003415(k)) \\ M. F. Hasler, Sep 26 2013

Formula

a(n)-> ~ 0.374*n^2 as n-> oo [Barbeau] (note: 1+2+3+4+5 ...-> ~ 1/2*n^2; the similarity stands also for higher power of the terms of sum). - Giorgio Balzarotti, Nov 14 2013
a(n) ~ c * n^2, where c = (1/2) * Sum_{p prime} 1/(p*(p-1)) = A136141 / 2 = 0.3865783345... . This constant was given by Barbeau (1961) but with the wrong value 0.374. - Amiram Eldar, Oct 06 2023