A190121 Partial sums of the arithmetic derivative function A003415.
0, 1, 2, 6, 7, 12, 13, 25, 31, 38, 39, 55, 56, 65, 73, 105, 106, 127, 128, 152, 162, 175, 176, 220, 230, 245, 272, 304, 305, 336, 337, 417, 431, 450, 462, 522, 523, 544, 560, 628, 629, 670, 671, 719, 758, 783, 784, 896, 910, 955, 975, 1031, 1032, 1113, 1129
Offset: 1
Examples
1'+2'+3'+4'+5' = 0+1+1+4+1 = 7 -> a(5) = 7.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
- E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull., Vol. 4, No. 2 (May 1961), pp. 117-122.
Programs
-
Maple
der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]): seq(add(der(i),i=1..j),j=1..100);
-
Mathematica
d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Table[d[n], {n, 1, 55}] // Accumulate (* Jean-François Alcover, Feb 21 2014 *) A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
-
PARI
s=0; A190121=vector(199,n,s+=A003415(n))
-
PARI
A190121(n)=sum(k=1,n,A003415(k)) \\ M. F. Hasler, Sep 26 2013
Formula
a(n)-> ~ 0.374*n^2 as n-> oo [Barbeau] (note: 1+2+3+4+5 ...-> ~ 1/2*n^2; the similarity stands also for higher power of the terms of sum). - Giorgio Balzarotti, Nov 14 2013
a(n) ~ c * n^2, where c = (1/2) * Sum_{p prime} 1/(p*(p-1)) = A136141 / 2 = 0.3865783345... . This constant was given by Barbeau (1961) but with the wrong value 0.374. - Amiram Eldar, Oct 06 2023
Comments