A190124 Decimal expansion of Ramanujan prime constant: Sum_{n>=1} (1/R_n)^2, where R_n is the n-th Ramanujan prime, A104272(n).
2, 6, 5, 5, 6, 3, 2, 7, 5, 8, 0
Offset: 0
Examples
0.265563275...
Links
- J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009), 630-635.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011.
Programs
-
Perl
use ntheory ":all"; use Math::MPFR qw/Rmpfr_get_str Rmpfr_set_default_prec Rmpfr_printf/; Rmpfr_set_default_prec(500); my $limit = shift || 9; my($maxexp, $sum) = (9, Math::MPFR->new(0)); for my $e (1..$limit) { my($numrp, $psum) = (0, Math::MPFR->new(0)); if ($e <= $maxexp) { my $rp = ramanujan_primes(10**($e-1),10**$e); $numrp += scalar @$rp; $psum += (1/Math::MPFR->new("$_"))**2 for @$rp; } else { for my $k (10**($e-$maxexp-1) .. 10**($e-$maxexp)-1) { my $rp = ramanujan_primes($k*10**$maxexp,($k+1)*10**$maxexp); $numrp += scalar @$rp; $psum += (1/Math::MPFR->new("$_"))**2 for @$rp; } } Rmpfr_printf("%2d ", $e); Rmpfr_printf("%14lu ", $numrp); Rmpfr_printf("%.20Rf ", $sum += $psum); Rmpfr_printf("%.20Rf\n", $psum); } # Dana Jacobsen, Jul 27 2015
Extensions
a(10) and a(11) (from data above by Dana Jacobsen_, Jul 27 2015) added by John W. Nicholson, Dec 17 2015
Comments